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Our ability to recognize objects in peripheral vision is fundamen-
tally limited by crowding, the deleterious effect of clutter that
disrupts the recognition of features ranging from orientation and
color to motion and depth. Previous research is equivocal on
whether this reflects a singular process that disrupts all features
simultaneously or multiple processes that affect each indepen-
dently. We examined crowding for motion and color, two features
that allow a strong test of feature independence. “Cowhide” stim-
uli were presented 15° in peripheral vision, either in isolation or
surrounded by flankers to give crowding. Observers reported ei-
ther the target direction (clockwise/counterclockwise from up-
ward) or its hue (blue/purple). We first established that both
features show systematic crowded errors (biased predominantly
toward the flanker identities) and selectivity for target–flanker
similarity (with reduced crowding for dissimilar target/flanker
elements). The multiplicity of crowding was then tested with ob-
servers identifying both features. Here, a singular object-selective
mechanism predicts that when crowding is weak for one feature
and strong for the other that crowding should be all-or-none for
both. In contrast, when crowding was weak for color and strong
for motion, errors were reduced for color but remained for mo-
tion, and vice versa with weak motion and strong color crowding.
This double dissociation reveals that crowding disrupts certain
combinations of visual features in a feature-specific manner, ruling
out a singular object-selective mechanism. Thus, the ability to rec-
ognize one aspect of a cluttered scene, like color, offers no guar-
antees for the correct recognition of other aspects, like motion.
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Our ability to recognize objects declines sharply in peripheral
vision (1). This is not due simply to resolution or acuity:

Objects that are visible in isolation become indistinguishable
when other objects fall within surrounding “interference zones”
(2–4). This process, known as crowding, presents a fundamental
limit on peripheral vision, with pronounced elevations in central
vision in disorders such as amblyopia (5) and dementia (6).
Crowded impairments arise due to a systematic change in the

appearance of target objects (7, 8), particularly outside the fovea
(9), where targets are induced to appear more similar to nearby
“flankers.” Crowding disrupts the recognition of features
throughout the visual system, including orientation (10), position
(11), color (12, 13), motion (14), and depth (15). Within these
dimensions, crowding is also modulated by the similarity between
target/flanker elements; differences in features, including ori-
entation and color, reduce errors considerably (10, 16). Given
the distributed processing of these features across the visual
system (17, 18), can one process produce this multitude of ef-
fects? Most models implicitly assume that crowding is a single
mechanism that affects all features in a combined manner, par-
ticularly for higher-order approaches where crowding derives
from attention (19, 20) or grouping (21). If crowding were in-
stead to operate independently for distinct visual features, these
effects could involve an array of neural substrates with varied
mechanisms.
A key prediction for a combined crowding process is that a

release from crowding in one feature domain (e.g., color) should

release other features (e.g., motion) at the same time. Accord-
ingly, target–flanker differences in color or contrast polarity can
reduce crowding for judgments of spatial form (16), while dif-
ferences in orientation improve crowded position judgments
(22). However, others have found that judgments of spatial fre-
quency, color, and orientation show a mixture of independent
and combined errors (23). This discrepancy may reflect the
specific features used in each study. Here we examined whether
crowding is combined or independent for judgments of motion
and color—arguably the two features with the clearest separation
in the visual system (17, 18).
We conducted three experiments with motion and color, each

using cowhide-like stimuli (24, 25) in the upper visual field.
Experiments 1 and 2 examined crowding for each feature sepa-
rately to determine both the nature of the errors (i.e., their
systematicity) and the flanker conditions that give strong vs.
weak crowding. We then measured the independence of
crowding with conjoint motion/color judgments in Experiment 3
by selecting conditions in which crowding was strong for one
feature and weak for the other, or vice versa.

Results
In Experiment 1, observers viewed moving cowhide stimuli and
reported the movement direction (clockwise [CW] or counter-
clockwise [CCW] of upward) of a target presented either in isolation
or surrounded by flankers moving in one of 16 directions (Fig. 1A
andMovie S1). Example data are shown in Fig. 1B, where unflanked
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judgments (gray points) transition rapidly from predominantly CW
to CCW at directions around upward (0°). The psychometric func-
tion accordingly shows low bias in the Point of Subjective Equality
with upward (PSE; the 50% midpoint), with the steep slope in-
dicating a low threshold (the difference from 50% to 75% CCW
responses). With upward-moving flankers (+0°; blue points) perfor-
mance declined, with a shallower psychometric function, but none-
theless remained unbiased. In contrast, flankers moving 30° CCW of
upward (red) induced a strong bias toward CCW responses, causing
a leftward shift of the function in addition to the shallower slope. The
opposite bias arose with CW flankers (yellow). Thus, both aspects of
crowding are captured here: assimilative errors via the PSE and the
impairment in performance via threshold values.
Psychometric functions were fit separately for each flanker

condition and observer. Mean PSE values across observers are
plotted as a function of the target–flanker difference in Fig. 1C. On
average, upward-moving flankers (0°) did not induce any bias, as with
the example observer. Flankers moving slightly CW (e.g., −15°) in-
duced a positive PSE shift, indicating an increase in CW responses.
These assimilative errors were mirrored for small target–flanker
differences in the CCW direction. Larger target–flanker differences
(e.g., ±90°) induced a repulsive PSE shift, indicating that the per-
ceived target direction was biased away from that of the flankers.
Further increases gave a reduction in bias, with downward flankers
inducing no bias on average. Threshold elevation values (flanked
thresholds divided by unflanked thresholds) are shown in Fig. 1D,
where a value of 1 indicates performance equivalent to unflanked
thresholds (dashed line). The greatest threshold elevation occurred
with upward-moving flankers, with a decline in threshold elevation as
flanker directions diverged. Downward-moving flankers gave the
least threshold elevation, although values remained >1 for all ob-
servers. Altogether, crowding was strong with assimilative errors
when target–flanker differences in motion were small and reduced
for large target–flanker differences with either repulsive errors or
minimal biases.
We next examined the effect of crowding on judgments of hue

in Experiment 2. Here observers identified whether the target
was blue/turquoise or purple/pink (Fig. 2A and Movie S2). When
present, flankers differed from the reference hue by one of 12
hue angles in the Derrington–Krauskopf–Lennie (DKL) color
space (26–28). Example data are shown in Fig. 2B. Flankers with
the same hue as the reference boundary (0°; blue points) did not
induce any bias, although the slope was shallower than when
unflanked (gray points). Flankers with a purple +15° hue angle
(purple points) induced both a shallower slope in the psychometric
function and a shift in the PSE, indicating assimilative errors, as did
the blue −15° flankers (turquoise points).
Fig. 2C plots the mean PSE values for all flanker conditions. As

with motion, flanker hues at the decision boundary (0°) induced
no bias on average. Flankers with CW hue differences (blue to
green in appearance) also induced positive shifts in PSE, in-
dicating an increase in blue responses. Assimilative errors were
again mirrored for flankers with CCW hue angles, ranging from
purple/pink to red, while larger target–flanker differences showed
little to no assimilative bias. Unlike motion, no errors of repulsion
were observed. Mean threshold elevation values are shown in Fig.
2D. Although threshold elevation values are lower than those for
motion, the patterns of data are broadly similar, with the greatest
threshold elevation for small target–flanker differences and a
decrease in crowding strength with increasing difference. Flankers
with the greatest differences (yellow/brown hues) did not elevate
thresholds relative to unflanked performance.
Overall, the crowding of both motion and color is selective for

target–flanker similarity; threshold elevation is high with small

Fig. 1. The effect of crowding on motion perception (Experiment 1).
(A, Left) An unflanked cowhide stimulus. (A, Middle) A crowded array with
the target between flankers moving 30° CCW of upward. (A, Right) Crowded
by flankers moving 150° CCW of upward. (B) Example data and psychometric
functions for observer YL, with the proportion of CCW responses plotted as a
function of target direction. Data are shown for an unflanked target (gray)
and with flankers moving upward (blue), −30° CW of upward (yellow), and
30° CCW (red). (C) Midpoint (PSE) values averaged over six observers (blue
points with error bars ±1 SEM), plotted as a function of flanker direction.
The mean output of a population crowding model is shown (green line)

surrounded by the 95% range of values. (D) Threshold elevation values for
the same conditions, plotted as in C.
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target–flanker differences and low with larger differences. In
both cases, crowding also produced systematic errors that were
predominantly assimilative for small target–flanker differences
and declined with larger differences (although direction errors
were repulsed at intermediate differences, which was not ap-
parent for hue). More generally, the results of both experiments
are broadly consistent with observations that biases follow the
derivative of squared thresholds in a range of perceptual
domains (29).
With this knowledge, we can now make predictions for paired

judgments of motion and color. Namely, when crowding is strong
for one feature (with small target–flanker differences, e.g., in
direction) and weak for the other feature (with larger differ-
ences, e.g., in hue), independent crowding processes allow as-
similative errors to occur for the feature with strong crowding
without errors for the feature with weak crowding. In contrast, a
combined mechanism predicts that crowding must be all or none:
If crowding is weak for one feature, then it must be either re-
duced or persist for both.
Experiment 3 was designed to distinguish between these al-

ternatives. Observers made conjoint judgments of the direction
(CW/CCW of upward) and hue (blue/pink) of the target cowhide
for isolated targets and in three crowding strength conditions. In
the first of these conditions, crowding was strong for both fea-
tures, with small target–flanker differences in direction and hue
(Movie S3). In the second condition (Movie S4), crowding was
weak for direction (large direction difference) and strong for hue
(small hue difference). The third condition (Movie S5) involved
strong crowding for direction (small differences) and weak
crowding for hue (large differences). Each crowding strength
condition had four combinations of motion and color for target
and flanker elements with respect to the decision boundary in
each feature dimension: both match (e.g., CW moving target and
flankers, all blue in hue), motion differs (e.g., a CW target with
CCW flankers, all purple), color differs (e.g., a purple target with
blue flankers, all moving CW), or both differ. The crucial con-
dition is when both differ; here, the all-or-none combined
mechanism predicts errors either in both features or in neither
feature, while the independent mechanism allows a reduction in
crowding in one feature without affecting the other feature.
With an unflanked target, observers correctly identified its

direction in 87.71 ± 3.29% (mean ± SEM) of trials and its hue in
93.96 ± 1.76% of trials. Fig. 3A shows mean responses for the
first crowding strength condition, with strong crowding for both
features. When target and flankers were matched in both feature
dimensions (red point), performance was high in both cases.
Here, even if crowding occurred, the assimilative effect of the
flankers would pull responses toward the correct direction/hue.
In the motion differs condition, observers were largely correct on
the hue and incorrect for direction. This again is predicted by
assimilative errors for direction, with either no effect on hue or
assimilative crowding toward the correct hue. The converse oc-
curred for the color differs condition, with a predominance of
color errors. Finally, in the both differ condition, the strong as-
similation for direction and hue induced errors for both features.
Fig. 3B shows results from the weak motion + strong color

crowding condition. As before, in the both match condition,
responses were correct on both features. In the motion differs
condition, the large direction difference gave a reduction in
crowding, with predominantly correct responses for direction
and likewise for hue given the matched target and flanker colors.
For the color differs condition, the small hue difference con-
tinued to induce assimilative errors, while the similar target and
flanker directions gave either assimilative errors or correct target

Fig. 2. Crowding for color perception (Experiment 2). (A, Left) An
unflanked stimulus. (A, Middle) A flanked array with the target between
flankers with +15° hues (purple). (A, Right) A target with +135° flankers
(pink/red). (B) Example data and psychometric functions for observer AK,
plotting the proportion of trials with a purple/pink response as a function of
target hue (depicted on the x-axis). Data are shown for an unflanked target
(gray) and flanked by stimuli with hues near the decision boundary (blue
points), +15° CCW (purple), and −15° CW (turquoise). (C) Midpoint (PSE)
values averaged over six observers (blue points ±1 SEM), plotted as a func-
tion of flanker hue. The mean output of a population model of crowding is

shown (green line), surrounded by the 95% range of values. (D) Threshold
elevation values for the same conditions, plotted as in C.
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recognition. Crucially, in the both differ condition, responses
were correct for direction (as in the motion differs condition) but
errors remained for hue, shifting responses into the “color errors”
quadrant. Overall, the reduction in motion errors causes data for
all conditions to align along the x-axis, while the separation along
the y-axis for color is retained. In other words, crowding was weak
for motion and strong for color in the same stimulus.

The converse pattern can be seen in the strong motion + weak
color condition (Fig. 3C). Responses were again close to ceiling
in the both match condition. In the motion differs condition, the
small target–flanker direction difference again induced a high
rate of assimilative motion errors and a low rate of color errors.
Here in the color differs condition, the large color difference
reduced crowding for hue judgments, while the matched target
and flanker signs for direction led to correct responses for both
features. Finally, the both differ condition again revealed a dis-
sociation: Large differences in target–flanker hue coupled with a
small difference in direction produced errors in direction re-
sponses despite correct responses for hue. Thus, the reduction in
color crowding collapses data along the y-axis, while the sepa-
ration for motion errors on the x-axis is retained. Here too,
crowded errors can occur for one feature and not for the other
feature.
These errors follow the prediction of independent crowding

processes for motion and color and are inconsistent with the
predictions of a combined mechanism, whereby errors should
have clustered in either the “both correct” or the “both errors”
quadrant. Accordingly, although errors in the both differ con-
dition appear to be correlated on a trial-by-trial basis when
crowding is strong for both features (SI Appendix, Fig. S1A), this
correlation breaks down when crowding is reduced for either
feature (SI Appendix, Fig. S1 B and C). We have further repli-
cated these results with an increase in crowding strength; with
additional flankers, we find stronger modulation in the crowding
of motion and color (SI Appendix, Fig. S2), but the pattern of
independent errors for conjoint judgments of the two features
remains (SI Appendix, Fig. S3). Finally, we also report that these
dissociations in crowding are not confined to motion and color;
conjoint judgments of luminance contrast polarity and direction
show that errors can be low for contrast polarity and yet remain
high for the direction of the same stimulus (SI Appendix, Fig. S4).

Models. To better understand the mechanisms underlying these
errors, and for the quantitative comparison of combined vs. in-
dependent mechanisms, we developed a set of computational
models. Given the systematicity of crowded errors in these ex-
periments, the most plausible models are those based on aver-
aging or substitution (7, 11). A more general approach has been
shown to produce both averaging and substitution errors by
combining population responses to target/flanker elements (30).
Thus, to simulate motion crowding in Experiment 1, we devel-
oped a model population of direction detectors, with responses to
target and flanker directions combined according to a weighting
field. Whereas previous studies have used weighting fields that
decreased with target–flanker distance (30), here the weights al-
tered crowding strength as a function of target–flanker dissimi-
larity. To simulate the observed repulsion errors, we incorporated
inhibitory interactions between target and flanker population
responses, similar to models of the tilt illusion (31, 32). Fur-
ther details and best-fitting parameters are provided in the
SI Appendix.
The best-fitting simulations of the crowded biases for motion

in Experiment 1 are shown in Fig. 1C (green line). The model
follows the increase in assimilative bias with small target–flanker
direction differences, driven by summation of the target and
flanker population responses. It also captures the rise and fall of
repulsion with larger differences, driven by inhibition of the
target (SI Appendix, Fig. S5). Similarly, threshold elevation val-
ues (Fig. 1D) show the greatest elevation for small direction
differences, with a decline on either side.
A similar population model was developed for color crowding

in Experiment 2 (SI Appendix, Fig. S5). Given the lack of re-
pulsion for color, inhibitory model parameters were set to 0. Fig.
2C plots simulated biases (green line), which again capture
the strong assimilative errors with small target–flanker hue

Fig. 3. Results from the conjoint crowding of motion and color (Experiment 3).
Data (circles) are plotted as the mean ±1 SEM proportion correct (n = 6) for the
target direction (x-axis) and hue (y-axis). The mean ±1 SEM output of the best-
fitting independent crowding model (triangles) with separate weights for motion
and color is also shown. Quadrants are demarcated to show the predominant error
type (e.g., “motion errors”). In each crowding strength condition (separate panels),
there were four target–flanker match conditions (depicted in the legend) in which
the 2AFC sign was matched for both features, the motion differed, the color dif-
fered, or both differed. (A) Strong motion + strong color crowding. (B) Weak
motion + strong color crowding. (C) Strong motion + weak color crowding.
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differences and the decrease in these errors at larger differences.
Threshold elevation values are similarly well described (Fig. 2D),
with a strong impairment for small target–flanker differences
that progressively declines. Thus, population coding models can
capture the errors observed for color as well as for motion.
We next used these population models to simulate the con-

joint motion and color judgments of Experiment 3. Given the
independent pattern of errors observed, here we focus on the
operation of an independent crowding model in which responses
to target and flanker elements were combined via separate
weighting fields for direction and hue (see SI Appendix for full
details). The independence of these weights meant that the
strength of crowding for one feature did not affect the other
feature. Fig. 3A shows the best-fitting simulations for this model
in the strong motion + strong color condition, which closely
follow the pattern of data because the probability of crowding is
high for both features. The model performs similarly well in the
weak motion + strong color condition (Fig. 3B) because the
separate weights allow crowding to be decreased for motion but
not for color, leaving a predominance of color errors in the both
differ condition. Similarly, in the both differ condition with strong
motion + weak color crowding (Fig. 3C), errors were decreased
for color but remained strong for motion. Overall, the model
closely follows the observed pattern of errors.
We also developed a range of “combined” models that use the

same weight to crowd motion and color on each trial. As outlined
in the SI Appendix, these models consistently fail to replicate the
pattern of errors found in Experiment 3 (SI Appendix, Figs. S6 and
S7). Variations of the combined mechanism do little to improve
performance; models that use the minimum or maximum proba-
bility for crowding in both features and those with a single
weighting field all produce worse fits than the independent
model. Regardless of the precise mechanism, the crowding of
motion and color is best explained by independent processes.

Discussion
Our perception of motion and color is disrupted by crowding.
Here we show that these effects are dissociable, indicating that
they derive from independent processes. In Experiment 3, ob-
servers made judgments of both features while we manipulated
the strength of crowding separately for each, using values from
Experiments 1 and 2. When crowding was weak for motion (via
large target–flanker direction differences) and strong for color
(via small differences), errors were reduced for motion but
remained high for color. Similarly, a reduction in color crowding
did not reduce errors for judgments of the target direction. A
population coding model of crowding reproduced this double
dissociation by pooling target and flanker signals with indepen-
dent weights for motion and color. Models in which crowding
operated as a combined all-or-none process (with matched
crowding strength for both features) failed to replicate these
results.
Dissociations were also evident in the crowded errors for

motion and color measured in Experiments 1 and 2. First, the
overall magnitude of biases and threshold elevation was lower
for color than for motion. This difference diminished with ad-
ditional flankers (SI Appendix, Fig. S2), further suggesting that
crowding increases with flanker number at different rates for the
two features. Second, intermediate target–flanker differences in
motion caused a repulsion in perceived target direction, while
equivalent color differences simply reduced the rate of assimi-
lative errors. Our population models reproduced these patterns
via inhibitory interactions for motion, which were absent for
color. Of course, this does not mean that contextual modulations
for color are never repulsive. Although similar contextual effects
tend toward assimilation in the periphery (33), repulsion in the
perceived hue of targets does occur in foveal vision (34). A
progression from foveal repulsion to peripheral assimilation also

occurs for orientation (9). Given that motion repulsion occurs in
both foveal and peripheral vision (35), it may be that the progres-
sion from repulsion to assimilation is more rapid across eccentricity
for color than for motion. In other words, these distinct patterns of
crowded errors offer further support for independent processes,
although they may reflect variations in a common principle.
Although these dissociations for motion and color crowding

are consistent with the separation between these features in the
visual system (17, 18), our findings differ from those of previous
studies using other feature pairs. We attribute this difference to
the degree of separation between these features in the visual
system. For instance, the mixed pattern of independent and
combined errors with spatial frequency, color, and orientation
(23) may have arisen because color is dissociable from orienta-
tion and spatial frequency, as has been suggested recently (36),
while orientation and spatial frequency are more closely linked.
Similarly, the combined pattern of errors found for orientation
and position crowding (22) could reflect the interdependence of
these features (37). That is, features that are closely related in
the visual system may show linked performance, while more
distinct feature pairs give dissociable effects. Comparable pat-
terns are evident in other visual processes; for instance, color and
orientation show independent decay rates in visual working
memory, unlike more closely linked spatial dimensions (38). A
strong feature association could similarly explain the release in
crowding for spatial form judgments by differences in color or
contrast polarity (16). However, in these cases, the spatial forms
are typically defined by the differential features (i.e., the spatial
distribution of color/polarity gives both the object surface and its
boundaries; ref. 39), making the color or polarity signals in-
formative regarding the feature being judged. Dissociations may
become evident only when features can be judged independently,
as in the present study.
Importantly, however, a single dissociation between features is

sufficient to reject an object-selective mechanism. Our results rule
out this mechanism with at least two dissociations: color and mo-
tion (Fig. 3) and contrast polarity and motion (SI Appendix, Fig.
S4). These results are similarly inconsistent with higher-level the-
ories of crowding. Gestalt approaches (21) argue that crowding
occurs when the target is “grouped” with the flankers—for ex-
ample, by forming a pattern with the flankers (40)—and that it is
reduced when the flankers form patterns that exclude the target
(41). The top-down nature of grouping suggests that it should
apply to the collection of features within the target as a whole,
making it an all-or-none process that is inconsistent with the dis-
sociations found here. Our findings are equally unlikely to be
accounted for by attentional theories (19, 20), since the high-level
nature of attentional selection predicts that crowding should
operate at the level of objects or locations rather than being di-
visible for specific features within a localized target. Of course,
attention and grouping could certainly modulate the strength of
crowding—our findings simply suggest that these processes are not
central to crowding.
Our population-coding model of these effects is similar to

previous approaches in crowding and related contextual modu-
lations (30–32). Here we show their generalizability to the do-
mains of motion and color. In fact, the dissociable nature of
crowding lends itself to this approach; distinct populations with
independent weighting fields for these features require fewer
assumptions than a combined mechanism (SI Appendix, Fig. S6).
Population coding may also explain the aforementioned dis-
tinction between combined crowding errors with some feature
pairs and independent errors with others; the separation be-
tween these features in a multidimensional space, driven perhaps
by their cortical distance (9, 42) could determine the nature of
these target–flanker interactions. Of course, it is also possible
that “texturization” models (43–45) could reproduce many of
these effects, although distinct spatial and temporal texture
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processes would be needed to reproduce the dissociations for
motion and color.
The dissociation between motion and color crowding further

suggests that they may rely on distinct neural substrates. The
many neural correlates of crowding reported from V1 through
V4 (46–49) may in fact reflect this distributed nature. In the most
minimal sense, crowding in the ventral stream (44) may differ
from the dorsal stream processes (17) likely involved in the
crowding of motion. Crowding effects for other dissociable fea-
ture pairs may then be distributed similarly. It follows that
crowding may be more profitably viewed as a general property of
the visual system, similar to distributed processes like adaptation
that affect a range of visual features (50). However, it is also
possible that dissociations could arise within a single cortical
region through the operation of distinct neural subpopulations,
as has been argued for feature-binding processes (51).
At first glance, the distributed basis of these crowding effects

bears some similarity to multilevel theories of crowding (4).
However, these theories are based on an apparent uniqueness in
the crowding of faces (52, 53), an effect that disappears once task
difficulty is equated for upright and inverted faces (54). Although
we did observe some differences in the crowding of motion and
color (e.g., with repulsion for motion vs. pure assimilation for
color), the broad selectivity of crowding was nonetheless highly
similar in Experiments 1 and 2. Namely, small target–flanker dif-
ferences gave strong assimilative errors and high threshold eleva-
tion for both features, while large differences gave a reduction in
threshold elevation. In other words, wherever crowding occurs, it
follows similar principles.
One complication with this distributed view of crowding is the

common size of interference zones observed across a range of vi-
sual features (Bouma’s law; refs. 2, 3, and 12). Although differ-
ences may yet emerge for the specific comparison of motion and
color, this common spatial region may again be consistent with our
effects deriving from distinct neural subpopulations with varying
featural selectivity but common spatial properties. Alternatively,
the proximity of target and flanker signals on the cortical surface
(9, 42) may determine their potential for interaction, while the
specific features present determine the nature of these interactions.
Taken together, our findings demonstrate that crowding in-

dependently disrupts motion and color while nonetheless oper-
ating via common principles, as seen in the implementation of
our population models. This dissociation excludes the possibility
that crowding operates as a singular mechanism and suggests
that at least some aspects of vision are disrupted by clutter in a
feature-specific manner.

Materials and Methods
Observers. Six observers (three males, including the authors) completed all
three experiments. All had normal or corrected-to-normal acuity and normal
color vision as assessed by the Ishihara test (55). Informed consent was given,
with procedures approved by the Experimental Psychology Ethics Committee
at University College London.

Apparatus. Experiments were programmed in MATLAB (MathWorks) on an
Apple Mac Pro using the PsychToolbox (56, 57). Stimuli were presented on a
21″ Mitsubishi Diamond Plus CRT monitor with a resolution of 1,400 × 1,050
pixels and a 75-Hz refresh rate. The monitor was calibrated using a Minolta
photometer and linearized in software to give a mean luminance of 50 cd/m2,
a maximum luminance of 100 cd/m2, and a white point near the standard CIE
Standard Illuminant D65. Maximum luminance values for red, green, and blue
were 28.3, 69.5, and 8.1 cd/m2, respectively. Observers viewed stimuli binoc-
ularly from a distance of 50 cm, with headmovements minimized using a head
and chin rest. Responses were given via a keypad, with auditory feedback
provided only during practice sessions.

Stimuli and Procedures. In all experiments, target and flanker stimuli were
cowhide elements (24, 25), created by bandpass filtering white noise with a
spatial frequency cutoff of 1.5 cycles/degree and rounding the luminance to
give two values (light and dark). Each element was presented within a

circular aperture with 2° diameter. The visible contours in these elements
enabled the perception of motion with minimal ambiguity given their ori-
entation variance (i.e., avoiding the aperture problem; ref. 24), while also
allowing alteration of the surface hue.

Observers were required to maintain fixation on a two-dimensional
Gaussian blob with an SD of 4′. The target was presented 15° above fixation,
either in isolation or with one flanker above and one below. The center-to-
center separation of target and flankers was 2.25°, corresponding to 0.15
times the eccentricity (well within standard interference zones; refs. 2 and 3).
Stimuli were presented for 500 ms, followed by a mask for 250 ms (a patch of
1/f noise in a circular window of diameter 4.8° when unflanked and 8.5° when
flanked, plus a cosine edge). The mask was followed by a mean-gray screen
with the fixation point, at which time observers responded.

In Experiment 1, cowhide stimuli were gray-scale elements with a Weber
contrast of ±0.75 against the mean-gray background. Patches were gener-
ated as a long strip of texture that moved behind the aperture with a dis-
placement of 5.8′ per frame every second monitor frame (to allow greater
resolution of directional displacements with larger, less frequent steps). This
gave an effective stimulus refresh rate of 37.5 Hz and a speed of 3.6 deg/s.

When unflanked, the target moved in one of nine equally spaced direc-
tions between ±16° around upward and ±32° when flanked (given the
greater difficulty). Observers indicated whether the target moved CCW or
CW of upward. When present, flankers moved together in one of 16 di-
rections relative to upward: 0°, ±15°, ±30°, ±60°, ±90°, ±120°, ±150°, ±165°,
or 180°. Each block had 10 repeat trials per target direction, giving 90 trials
for unflanked blocks and 180 trials for flanked conditions, in which opposing
flanker directions (e.g., ±15°) were interleaved within a single block to en-
sure a balanced likelihood of CW and CCW responses. The 0° and 180°
conditions were also interleaved for consistency. Each block was repeated
three times, with all blocks randomly interleaved, to give 4,590 total trials
per observer, plus practice, completed in three or four sessions of 1 h each.

In Experiment 2, cowhides were static and presented with a range of hues.
Colors were determined using the DKL color space (26–28) with a luminance
contrast of ±0.3 for light and dark regions and a color contrast/saturation of
0.2. Variations were applied solely to the hue angle. The reference hue angle
was determined individually, given variation in the categorical boundaries
for color between observers (28). We did so by presenting the test range of
hues (from blue/turquoise to pink/purple) and asking observers to indicate
the neutral midpoint. This gave a reference hue of 262.5° for four observers,
262.0° for JG, and 264.0° for CS. When unflanked, the target was presented
with one of nine equally spaced hues ±12° from the base hue, and from ±18°
when flanked. Observers judged whether the target appeared blue/turquoise
(CW in DKL space) or purple/pink (CCW). When present, flankers had one of 12
hue angles relative to the base: 0°, ±15°, ±30°, ±45°, ±135°, ±150°, and 180°,
tested in blocks that contained opposing angles as above. This gave 90 trials
per unflanked block and 180 trials when flanked, giving 3,510 total trials per
observer, plus practice, completed in three sessions.

In Experiment 3, cowhides varied in both direction and hue. For each ob-
server, we selected values from the first two experiments that gave near-ceiling
performance levelswhenunflankedbut thatwere clearly impaired by crowding
in the strongest crowding conditions. This gave values of ±5° (YL), ±6° (CS and
JG), ±7° (DO), ±10° (AK), and ±16° (MP) for direction and ±3° (CS and YL), ±4°
(DO), ±5° (JG), ±7° (AK), and ±10° (MP) for hue. Observers indicated the di-
rection and hue of the target as a 4AFC response: blue/CCW, blue/CW, pink/
CCW, or pink/CW. Targets were presented either in isolation or with flankers
selected for each feature to give either “strong” or “weak” crowding (as
above). Strong flanker directions were ±10° (DO), ±15° (AK, CS, JG, and YL),
and ±30° (MP), with weak values of ±165° (five observers) and ±175° (AK).
Strong flanker hues were ±15° (AK and YL) and ±30° (the remainder), with
weak values of ±150° (five observers) and ±165° (JG).

In addition to the unflanked condition, the above combinations of target
and flanker elements gave three crowding strength conditions: strong motion +
strong color crowding (small target–flanker differences for each), weak motion +
strong color crowding (large motion, small color differences), and strong motion +
weak color crowding (small motion, large color differences). For flanked conditions,
there were 16 combinations of direction and hue values in the target and flanker
elements (2 target directions × 2 flanker directions × 2 target hues × 2 flanker hues).
We grouped these conditions into four combinations of target/flanker elements in
terms of their agreement in the 2AFC decision space for each feature. In the both
match conditions, both motion and color were matched in target and flanker ele-
ments. When motion differed, the sign of the target direction differed from that of
the flankers (e.g., a CW target with CCW flankers), but their hues matched. Con-
versely, when color differed, the hue of the target differed from the flankers, while
directions were matched. Finally, both target and flanker elements could differ in
direction and hue values. Note that these distinctions relate to the decision boundary,
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ignoring precise values of direction/hue (e.g., −15° and −165° flankers have the same
sign as a −8° target). The four crowding strength conditions were tested in separate
blocks, with each combination of target and flanker elements repeated 10 times
per block to give 40 trials when unflanked and 160 trials for flanked conditions.
Each blockwas repeated six times, interleaved at random, with 3,120 total trials
per observer (plus practice), completed in three sessions.

Analyses. In Experiments 1 and 2, psychometric functions were fit to data as a
cumulative Gaussian function with three free parameters: midpoint/PSE (at
50%), slope, and lapse rate. Functions were fit separately for each flanker
condition and observer. Shifts in the midpoint were taken as changes in ap-
pearance (i.e., assimilation vs. repulsion errors). Thresholds were taken as the
difference in direction/hue required to shift performance from the midpoint to
75% CCW responses, with threshold elevation obtained by dividing flanked
thresholds by unflanked thresholds. Data in Experiment 3 were combined from
the 16 target–flanker combinations into four target–flanker match conditions
and analyzed as the percent correct in each feature dimension, with each
treated as a 2AFC judgment.

Models. Data in Experiments 1 and 2 were fit with a population coding model
based on that of Harrison and Bex (30). The motion crowding model of Experi-
ment 1 had nine free parameters, with five free parameters for the color model
in Experiment 2 (since the lack of repulsion allowed inhibitory components to be

removed), as described in the SI Appendix and depicted in SI Appendix, Fig. S5. SI
Appendix, Table S1 shows the best-fitting parameters, with final outputs in Figs. 1
and 2. In Experiment 3, the independent model for motion and color crowding
involved population responses to target and flanker elements that were com-
bined via separate weighting fields for each feature. The majority of parameters
were carried forward from Experiments 1 and 2, leaving three free parameters (SI
Appendix, Table S2). Outputs of the best-fitting model are shown in Fig. 3. A
series of combined models were also developed that were identical to the in-
dependent model except for the use of common weights for both features. SI
Appendix, Tables S3 and S4 present the best-fitting parameters, and outputs are
shown in SI Appendix, Figs. S6 and S7. Parts of this work were previously pre-
sented to the Vision Sciences Society (58).

Data Availability Statement. Datasets S1–S3 provide data in proportion of CCW
format for each observer in Experiments 1 and 2 and in proportion of correct
format for each observer in Experiment 3. MATLAB code for psychometric func-
tions and stimulus generation is available at https://github.com/eccentricvision.
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Trial-by-trial	correlations	in	the	crowding	of	motion	and	colour	

We	demonstrate	in	Experiment	3	that	crowded	errors	for	motion	and	colour	are	dissociable.	Central	to	
this	experiment	was	the	both	differ	condition,	where	target	and	flanker	elements	had	opposite	signs	
relative	to	the	decision	boundary	(e.g.	a	clockwise-moving	blue	flanker	amongst	counterclockwise-
moving	purple	flankers).	In	this	condition	when	crowding	was	strong	for	both	motion	and	colour,	
errors	were	high	for	both	features.	In	contrast,	when	crowding	was	strong	for	motion	and	weak	for	
colour,	both	differ	responses	were	predominantly	incorrect	for	motion	and	correct	for	colour.	
Conversely,	with	weak	motion	and	strong	colour	crowding,	responses	were	correct	for	motion	and	
incorrect	for	colour.	These	dissociations	are	consistent	with	independent	crowding	processes	for	
motion	and	colour.		

Another	way	to	approach	this	issue	is	to	examine	trial-by-trial	variations.	If	crowding	were	driven	by	a	
combined	all-or-none	crowding	mechanism,	responses	on	individual	trials	should	be	either	incorrect	
for	both	features	(due	to	crowding)	or	correct	on	both	(when	crowding	is	released).	In	contrast,	
independent	crowding	mechanisms	allow	trial-by-trial	dissociations	in	the	same	way	as	observed	for	
error	rates	across	the	whole	experiment.	We	therefore	sought	to	test	these	predictions	by	examining	
the	correlation	between	responses	for	motion	and	colour	across	trials.		

Responses	on	each	trial	were	initially	encoded	as	binary	variables	(incorrect	vs.	correct).	We	first	
determined	the	overall	proportion	of	each	response	type	across	the	experiment	by	converting	the	
response	on	each	trial	to	one	of	four	outcomes	–	responses	were	either	incorrect	on	both	motion	and	
colour,	correct	on	both,	correct	on	motion	but	incorrect	on	colour,	or	vice	versa.	Proportions	were	
calculated	for	each	observer	in	each	condition,	collapsed	across	both	target	and	flanker	sign	(e.g.	
whether	the	target	was	moving	CW	or	CCW).	Here	we	report	the	outcome	of	these	analyses	for	the	both	
differ	condition	only,	given	that	this	was	the	condition	required	to	separate	performance	of	the	
independent	and	combined	models.		

This	classification	provides	a	2´2	table	of	outcomes.	The	mean	proportion	of	each	response	across	
observers	in	the	strong	motion	+	strong	colour	condition	is	shown	in	Figure	S1A.	Similar	to	the	percent-
correct	values	shown	in	Figure	3,	responses	were	most	frequently	incorrect	for	both	features	in	a	given	
trial,	with	colour	errors	forming	the	second-most	frequent	error	type,	closely	followed	by	errors	in	both	
features.	In	this	case	then,	the	high	proportion	of	errors	in	both	features	appears	consistent	with	a	trial-
by-trial	correlation.	To	quantify	this	further,	we	computed	phi	coefficients	(used	to	quantify	
correlations	for	binary	variables)	using	the	binary	response	outcomes	on	each	both	differ	trial,	
separately	for	each	observer.	These	correlations	were	significant	for	5/6	observers	(AK:	f=.217,	p<.001,	
CS:	f=.378,	p<.0001,	DO:	f=.228,	p<.0001,	JG:	f=.187,	p=.004,	MP:	f=.458,	p<.0001,	YL:	f=.024,	p=.705).	
In	other	words,	an	error	for	motion	was	likely	to	coincide	with	an	error	for	colour.	Of	course,	the	
correlated	outcome	in	this	condition	derives	from	the	high	strength	of	crowding	in	both	features	
(coupled	with	the	tendency	for	correct	responses	on	both	features	in	around	20%	of	trials).	Both	
models	can	therefore	explain	this	outcome.		

Compare	now	the	results	for	the	both	differ	condition	with	weak	motion	+	strong	colour	crowding	
(Figure	S1B).	A	combined	model	predicts	that	observers	should	either	be	correct	for	both	features,	or	
incorrect	on	both.	In	contrast,	the	most	likely	outcome	was	a	correct	motion	and	incorrect	colour	
response,	followed	by	correct	responses	for	both	features	at	half	the	rate,	and	negligible	proportions	in	
the	remaining	cells.	The	correlation	between	these	responses	on	a	trial-by-trial	basis	was	not	significant	
for	any	of	the	observers	(AK:	f=.092,	p=.154,	CS:	f=-.125,	p=0.053,	DO:	f=.042,	p=.514,	JG:	f=0,	p=1,	MP:	
f=.019,	p=.767,	YL:	f=.025,	p=.700).	In	other	words,	the	response	shifted	to	a	predominance	of	errors	in	
colour	rather	than	motion	for	all	of	our	observers,	consistent	with	the	predictions	of	an	independent	
model.		
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Figure	S1.	The	frequency	of	response	errors	across	the	trials	of	Experiment	3.	Data	from	the	both	differ	condition	is	shown	for	
the	strong	motion	+	strong	colour	crowding	condition	(panel	A),	with	weak	motion	+	strong	colour	crowding	(panel	B)	and	
with	strong	motion	+	weak	colour	crowding	(panel	C).	Data	is	reported	as	the	mean	proportion	of	trials	in	which	each	of	the	
four	error	types	occurred,	as	indicated	both	by	the	colour	of	each	cell	(see	colour	map)	and	numerically	±1	SEM.		

Finally,	results	for	the	both	differ	condition	with	strong	motion	+	weak	colour	crowding	are	shown	in	
Figure	S1C.	Here	the	most	likely	outcome	was	an	incorrect	motion	and	correct	colour	response,	
followed	by	correct	responses	for	both	features,	and	negligible	proportions	in	the	remaining	cells.	The	
correlation	between	these	responses	was	not	significant	for	5/6	observers,	with	a	negligible	correlation	
for	the	remainder	(AK:	f=.034,	p=.593,	CS:	f=.044,	p=.495,	DO:	f=.120,	p=.064,	JG:	f=.080,	p=.216,	MP:	
f=-.080,	p=.214,	YL:	f=.058,	p=.028).	This	predominance	of	errors	in	motion	rather	than	colour	is	again	
consistent	with	the	predictions	of	an	independent	model.		

Altogether,	when	crowding	was	strong	in	both	features,	the	high	proportion	of	errors	on	each	gave	a	
significant	trial-by-trial	correlation.	In	contrast,	responses	were	clearly	uncorrelated	in	the	latter	two	
crowding-strength	conditions	given	that	a	reduction	in	crowding	for	one	feature	did	not	affect	the	rate	
of	errors	in	the	other.	These	findings	are	again	consistent	with	independent	crowding	processes	for	
motion	and	colour.		

Experiments	S1-S3:	Crowding	for	motion	and	colour	with	increased	flanker	numbers	

Experiments	1-3	reported	in	the	main	text	used	two	flankers	to	induce	crowding,	positioned	along	the	
radial	axis	with	respect	to	fixation.	We	selected	this	configuration	because	radial	flankers	have	the	
strongest	influence	on	crowding	(1),	and	because	the	effect	of	radial	vs.	tangential	flankers	on	target	
appearance	can	vary	depending	on	their	contour	alignment	with	the	target	(2-4).	It	is	possible	however	
that	other	configurations	could	increase	the	strength	of	crowding,	and	in	turn	that	combined	effects	of	
crowding	on	motion	and	colour	judgements	may	become	more	apparent	with	this	increased	strength.	
Because	crowded	performance	impairments	have	been	shown	to	increase	in	conjunction	with	the	
number	of	flankers	(5,	6,	though	cf.	7),	we	repeated	our	experiments	with	four	flankers.	

Another	potential	complication	in	Experiments	1-3	is	with	our	use	of	a	post-stimulus	mask	–	in	each	
experiment,	a	patch	of	1/f	noise	was	presented	immediately	after	stimulus	offset	in	order	to	minimise	
visual	persistence	(8).	It	is	possible	however	that	these	masks	interfered	with	the	stimulus.	In	
particular,	if	the	masks	were	to	interfere	more	strongly	with	one	feature	than	the	other	(e.g.	colour;	9),	
this	may	have	promoted	independent	effects	in	our	data.	We	therefore	removed	the	post-stimulus	mask	
for	these	experiments.		

To	assess	whether	these	manipulations	altered	crowding	strength,	whilst	also	ensuring	that	large	
target-flanker	differences	continued	to	give	a	sufficient	reduction	in	crowding,	we	examined	the	
crowding	of	motion	and	colour	separately	with	abridged	versions	of	Experiments	1	and	2,	respectively	
(Experiments	S1	and	S2).	We	then	used	these	parameters	to	measure	conjoint	judgements	of	motion	
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and	colour,	as	in	Experiment	3	(Experiment	S3).	Six	observers	were	tested	(4	female),	including	one	of	
the	authors	(JG),	one	who	participated	in	the	prior	experiments	(AK)	and	four	new	naïve	observers.	A	
seventh	observer	was	excluded	given	threshold	values	for	direction	that	were	outside	the	measurable	
range.	

Experiment	S1	measured	motion	crowding	under	these	circumstances.	As	above,	the	number	of	
flankers	was	increased	to	four,	positioned	above,	below,	left	and	right	of	the	target	when	present	
(Figure	S2A).	The	post-stimulus	mask	was	also	removed,	with	participants	responding	immediately	
after	stimulus	offset.	Because	our	aim	was	to	find	one	target-flanker	difference	with	strong	crowding	
and	another	with	weak	crowding	(as	parameters	for	the	conjoint	Experiment	S3),	we	also	reduced	the	
number	of	flanked	conditions	from	16	to	4.	Based	on	the	results	of	Experiment	1,	observers	were	thus	
presented	with	a	small	target-flanker	difference	(2	conditions,	±15°	from	upwards)	expected	to	
produce	strong	crowding	and	a	large	difference	(±175°)	expected	to	give	reduced	crowding.	Note	that	
the	latter	difference	was	increased	from	Experiment	1.	Observers	were	presented	with	these	4	flanked	
conditions	in	2	blocks,	plus	a	third	block	for	the	unflanked	condition,	with	3	repeats	of	each	interleaved	
randomly.	Target	directions	ranged	from	±20°	in	11	steps	in	the	unflanked	condition	and	±40°	in	11	
steps	for	flanked	conditions.	This	range	was	increased	from	Experiment	1	given	observer	reports	of	the	
difficulty	in	these	conditions.	Observers	began	with	practice	blocks	with	2	repeats	per	target	direction,	
repeated	until	performance	stabilised.	They	then	began	the	final	testing	phase	with	10	repeats	per	
direction.	Testing	took	1-2	hours	in	hour-long	sessions,	including	practice.	Remaining	stimulus	
parameters	and	procedures	were	identical	to	those	of	Experiment	1	in	the	main	text.		

As	before,	data	were	first	analysed	as	percent	counterclockwise	responses,	with	psychometric	functions	
fit	to	the	data	to	obtain	bias	and	threshold	estimates.	Given	our	aim	to	determine	the	strength	of	
crowding	in	each	condition,	here	we	further	converted	bias	values	to	‘assimilation	scores’	by	reversing	
the	sign	of	biases	for	clockwise	flanker	conditions.	This	made	positive	and	negative	values	indicative	of	
assimilation	and	repulsion,	respectively.	Values	within	each	flanker	difference	condition	(±15	and	
±175)	were	averaged	for	each	observer.	Mean	assimilation	scores	across	observers	are	shown	in	Figure	
S2B.	Here	the	small	target-flanker	difference	led	to	strong	assimilative	bias,	with	a	mean	of	21.08°,	
reducing	to	a	small	degree	of	repulsion	at	the	larger	separation,	with	a	mean	of	-2.73°.	For	comparison,	
the	equivalent	conditions	in	Experiment	1	(±15°	and	±165°)	gave	assimilation	scores	of	13.18°	and	
6.52°.	The	manipulations	in	Experiment	S1	were	therefore	successful	both	in	increasing	the	strength	of	
crowding	with	small	target-flanker	differences,	as	well	as	increasing	the	reduction	in	assimilative	errors	
with	larger	differences.		

Threshold	values	were	similarly	averaged	across	clockwise	and	counterclockwise	conditions	for	each	of	
the	two	flanker	difference	conditions,	before	being	divided	by	unflanked	thresholds	to	give	threshold	
elevation	values,	plotted	in	Figure	S2C.	Here	the	small	target-flanker	difference	gave	thresholds	2.87´	
higher	than	unflanked	levels,	while	thresholds	with	the	large	difference	were	1.99´	higher.	Equivalent	
values	from	Experiment	1	were	3.05	and	1.83.	Here	then	there	is	little	change	in	threshold	elevation	
from	two	to	four	flankers,	though	the	slight	increase	(for	both	target-flanker	separations)	is	consistent	
with	observer	reports	that	the	target	was	occasionally	difficult	to	see	under	these	conditions.	This	is	
likely	consistent	with	the	previously	observed	increase	in	the	impairment	of	detection	thresholds	as	
flanker	number	increases	(5).	Nonetheless,	in	conjunction	with	the	bias	values	reported	above,	
crowding	effects	were	more	strongly	modulated	here	than	in	Experiment	1.	
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Figure	S2.	Results	for	Experiments	S1	and	S2	with	4	flankers.	A.	Example	stimuli	from	Experiment	S1	with	a	small	directional	
offset	in	the	flankers.	B.	Assimilation	scores	for	motion	crowding	in	Experiment	S1	with	small	(±15°)	and	large	(±175°)	
direction	differences	in	the	flankers.	Positive	values	indicate	assimilation	and	negative	values	repulsion.	C.	Threshold	elevation	
scores	for	Experiment	S1,	plotted	as	multiples	of	unflanked	thresholds.	D.	Example	stimuli	from	Experiment	S2	with	a	small	
hue	difference	in	the	flankers.	E.	Assimilation	scores	for	colour	crowding	in	Experiment	S2	with	small	(either	±15°	or	±30°)	or	
large	(±175°)	hue	angle	differences	in	the	flankers.	F.	Threshold	elevation	values	for	Experiment	S2.		

Experiment	S2	was	then	conducted	to	examine	similar	values	for	the	crowding	of	colour.	As	above,	we	
conducted	this	experiment	with	four	flankers	(Figure	S2D),	the	removal	of	the	post-stimulus	mask,	and	
a	reduction	in	the	number	of	target-flanker	difference	conditions.	During	practice	blocks,	two	observers	
(AK	and	MH)	showed	only	minimal	crowding	effects	with	hue	differences	of	±30°	and	were	therefore	
tested	with	±15°	for	the	small	target-flanker	difference	condition	(consistent	with	values	used	in	
Experiment	3).	The	large	target-flanker	hue	difference	was	±175°	for	all	observers	(giving	hues	that	
were	rusty	orange	or	yellow/brown	in	appearance).	Target	hue	differences	ranged	from	±15°	in	11	
steps	in	the	unflanked	condition	and	±25°	in	11	steps	for	flanked	conditions,	again	increased	from	the	
values	of	Experiment	2	given	the	higher	difficulty	with	this	configuration.	For	simplicity	all	observers	
were	set	to	have	the	same	decision	boundary	for	hue	(262.5°),	unlike	the	variations	in	Experiment	2	
(which	had	only	minimal	effect).	The	remaining	stimulus	parameters	and	procedures	were	identical	to	
Experiment	2.		

Data	were	analysed	in	the	same	way	as	Experiment	S1,	with	mean	assimilation	scores	shown	in	Figure	
S2E.	On	average,	small	hue	differences	in	the	flankers	induced	a	strong	assimilative	bias	of	27.98°,	
whereas	large	differences	gave	biases	of	only	2.06°.	This	brings	colour	biases	in	line	with	those	seen	
above	for	motion,	presenting	a	marked	increase	from	the	corresponding	values	in	Experiment	2	(using	
the	values	of	±15/30°	and	±150/165°	selected	for	Experiment	3),	which	were	7.02°	and	2.74°,	
respectively.	Similarly,	thresholds	were	elevated	by	2.80´	and	1.18´	unflanked	levels	for	the	small	and	
large	differences,	respectively	(Figure	S2F).	This	too	is	an	increase	on	the	values	of	2.34	and	1.47	in	
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Experiment	2.	In	other	words,	this	configuration	gave	more	bias	and	higher	threshold	elevation	with	
small	target-flanker	differences,	as	well	as	a	larger	decrease	in	these	values	with	large	target-flanker	
differences.		

Given	this	increase	in	crowding	strength,	we	next	used	these	parameters	with	conjoint	judgements	of	
motion	and	colour	in	Experiment	S3.	Observers	were	tested	with	the	flanker	values	used	in	
Experiments	S1	and	S2,	again	with	4	flankers	and	the	removal	of	the	post-stimulus	mask.	Target	
direction	and	hue	values	were	selected	as	in	Experiment	3	as	values	that	were	gave	near-ceiling	
performance	in	the	unflanked	condition	whilst	also	being	clearly	shifted	by	biases	in	the	flanked	
conditions.	This	gave	target	directions	of	±8°	(for	AS,	MF,	MH,	and	JG)	and	±10°	(for	AM	and	HC)	around	
upwards,	and	hue	differences	of	±5°	(for	MH),	±8°	(for	AS,	MF,	HC,	and	JG)	and	10°	(for	AM)	from	
262.5°.	Remaining	parameters	were	identical	to	those	of	Experiment	3.		

With	an	unflanked	target,	observers	correctly	identified	its	direction	in	87.64	±	1.45%	(mean	±	SEM)	of	
trials,	and	its	hue	in	90.00	±	2.59%	of	trials.	Figure	S3A	shows	mean	responses	for	the	flanked	condition	
with	small	target-flanker	differences	in	each	feature	(to	give	strong	crowding	for	both).	When	the	target	
and	flankers	were	matched	in	sign	for	both	features	(red	point,	e.g.	a	purple	CW	target	amongst	purple	
CW	flankers),	performance	was	again	high	in	both	cases.	This	could	be	due	either	to	a	lack	of	crowding	
or	the	assimilative	effect	of	the	flankers	pulling	responses	toward	the	correct	direction/hue.	In	the	
motion	differs	condition,	observers	were	largely	correct	on	the	hue	and	incorrect	for	direction.	This	
again	is	predicted	by	assimilative	errors	for	direction,	with	either	no	effect	on	hue	or	assimilative	
crowding	towards	the	correct	hue.	The	opposite	occurred	for	the	colour	differs	condition,	leading	to	a	
predominance	of	colour	errors.	Finally,	the	both	differ	condition	induced	a	high	rate	of	errors	in	both	
features,	indicative	of	strong	assimilation	for	each.		

Figure	S3B	shows	results	from	the	weak	motion	+	strong	colour	crowding	condition.	As	before,	in	the	
both	match	condition,	responses	were	clearly	correct	on	both	features.	In	the	motion	differs	condition,	
the	large	direction	difference	gave	a	reduction	in	crowding,	with	predominantly	correct	responses	for	
direction,	and	likewise	for	hue	given	the	matched	target-flanker	colours.	For	colour	differs,	the	small	hue	
difference	continued	to	induce	assimilative	errors,	while	the	flanker	directions	gave	either	assimilative	
errors	or	correct	target	recognition.	Crucially,	in	the	both	differ	condition,	responses	were	correct	for	
direction	(as	with	motion	differs)	but	errors	remained	for	hue,	shifting	responses	into	the	‘colour	errors’	
quadrant.	In	other	words,	crowding	was	strong	for	colour	and	weak	for	motion	in	the	same	stimulus.		

The	reverse	pattern	can	be	seen	in	the	strong	motion	+	weak	colour	condition	(Figure	S3C).	Responses	
were	again	close	to	ceiling	in	the	both	match	condition.	In	the	motion	differs	condition,	the	small	target-
flanker	direction	difference	induced	a	high	rate	of	assimilative	motion	errors,	with	a	low	rate	of	hue	
errors.	Here	in	the	colour	differs	condition,	the	large	colour	difference	reduced	crowding	for	hue	
judgements,	while	the	matched	target-flanker	signs	for	direction	led	to	correct	responses	in	both	
features.	Finally,	the	both	differ	condition	again	revealed	a	dissociation	–	small	target-flanker	
differences	in	direction	coupled	with	large	differences	in	hue	produced	consistent	errors	in	direction	
despite	correct	responses	for	hue.	Here	too,	crowding	can	occur	for	one	feature	and	not	the	other.		

These	errors	again	follow	the	prediction	of	independent	crowding	processes	for	motion	and	colour,	and	
replicate	our	earlier	result	with	an	increased	number	of	flankers.	An	increase	in	the	strength	of	
crowding	did	not	therefore	change	the	independence	of	these	errors.	In	fact,	the	difference	between	
performance	in	the	target-flanker	match	conditions	is	somewhat	larger	than	that	shown	in	Figure	3	(e.g.	
along	the	y-axis	in	the	weak	motion	+	strong	colour	crowding	condition),	given	the	greater	assimilative	
effects	for	colour	in	particular.	This	replication	also	demonstrates	that	our	use	of	a	post-stimulus	mask	
in	Experiment	3	did	not	artificially	produce	an	independent	pattern	of	errors.		
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Figure	S3.	Results	from	the	conjoint	motion	and	colour	
judgements	of	Experiment	S3	with	4	flankers.	Data	is	
plotted	as	the	mean	proportion	correct	for	the	target	
direction	(x-axis)	and	hue	(y-axis)	±1	SEM,	as	in	Figure	3	
of	the	main	text.	Indicative	target-flanker	values	are	
shown	via	the	legend.	A.	Results	from	the	strong	motion	+	
strong	colour	crowding	condition.	B.	Results	from	the	
weak	motion	+	strong	colour	crowding	condition.	C.	
Results	from	the	strong	motion	+	weak	colour	condition.		

	

	

	

	

	

	

The	differential	effect	of	flanker	number	observed	these	experiments	offers	further	support	for	the	
independence	of	motion	and	colour	crowding.	In	particular,	although	the	increase	to	four	flankers	gave	
a	modest	increase	in	biases	and	threshold	elevation	for	motion	in	Experiment	S1	relative	to	those	in	
Experiment	1,	the	average	rate	of	assimilative	errors	for	colour	more	than	tripled	in	Experiment	S2	
from	the	values	in	Experiment	2.	Observers	also	noted	that	the	judgements	of	motion	in	Experiment	S1	
were	highly	difficult,	with	an	occasional	tendency	for	the	target	to	disappear,	an	effect	that	was	not	
found	in	earlier	experiments	(corroborated	by	AK	and	JG	who	completed	all	experiments).	This	could	be	
due	to	an	increase	in	the	suppressive	effect	of	the	flankers	as	their	number	increases,	seen	also	with	the	
increased	repulsive	effect	in	Experiment	S1	with	large	direction	differences.	Suppression	could	also	
explain	the	lower	increase	in	assimilative	biases	for	motion	relative	to	Experiment	1,	compared	with	
the	strong	increase	in	the	purely	assimilative	biases	for	colour.	Nonetheless,	this	divergence	in	the	
effect	of	flanker	number	for	motion	and	colour	offers	further	evidence	that	independent	crowding	
processes	affect	these	two	features.	

Experiment	S4:	Crowding	for	motion	and	luminance-contrast	polarity	

Our	results	demonstrate	that	crowding	is	independent	for	judgements	of	direction	and	hue.	It	is	
possible,	however,	that	this	finding	is	somehow	specific	to	these	two	feature	dimensions.	A	common	
manipulation	in	studies	seeking	to	reduce	crowding	is	the	use	of	target-flanker	differences	in	luminance	
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contrast	polarity	–	a	black	target	amongst	white	flankers	(or	vice	versa)	gives	considerably	less	
crowding	than	elements	with	uniform	polarity	(10-12).	Here	we	sought	to	test	the	generality	of	our	
conclusions	with	conjoint	judgements	of	direction	and	luminance	contrast	polarity.		

Unlike	hue,	luminance	contrast	polarity	is	a	binary	property	(light	or	dark),	with	linear	variations	in	
luminance	contrast	between	these	extremes.	It	is	therefore	not	ideal	to	run	our	full	paradigm	with	this	
feature	–	the	conjoint	judgements	of	Experiments	3	and	S3	involve	fine	discriminations	around	a	
decision	boundary	with	flankers	that	are	either	close	to	this	boundary	(small	differences	leading	to	
strong	crowding)	or	distant	(leading	to	weak	crowding).	Here,	variations	in	luminance	contrast	around	
the	decision	boundary	would	fall	close	to	zero	contrast	(mean	grey),	affecting	the	visibility	of	these	
stimuli.	This	in	turn	would	likely	introduce	errors	in	the	motion	judgements,	given	issues	with	target	
detectability,	potentially	making	errors	appear	combined	simply	because	the	target	is	invisible.	We	can	
nonetheless	run	a	subset	of	these	conditions	with	the	maximum	values	of	luminance	contrast	(i.e.	full	
white	vs.	full	black)	and	examine	the	effect	of	reductions	in	crowding	from	contrast	polarity	on	
judgements	of	direction.		

In	Experiment	S4	we	therefore	required	observers	to	make	conjoint	judgements	of	direction	and	
contrast	polarity.	As	in	prior	experiments,	a	combined	mechanism	for	crowding	predicts	that	any	
reduction	in	crowding	for	contrast	polarity	must	also	reduce	crowding	for	direction.	In	contrast,	
independent	mechanisms	allow	for	errors	in	direction	to	remain	high	even	with	a	reduction	in	
crowding	for	contrast-polarity	judgements.		

The	design	of	this	experiment	was	similar	to	that	of	Experiments	3	and	S3.	Here,	cowhide	elements	
varied	in	both	direction	and	luminance	contrast	polarity.	For	this	purpose,	we	rendered	only	half	of	the	
cowhide	elements	(unlike	the	combined	light/dark	regions	in	other	experiments),	with	one	half	of	the	
image	rendered	either	white	or	black,	and	the	remainder	left	as	the	mean	grey	of	the	background	
(Figures	S4A	and	S4B).	The	same	6	observers	who	completed	Experiments	S1-S3	also	took	part	in	this	
experiment.	Target	values	for	direction	were	taken	from	those	used	in	Experiment	S3:	±8°	around	
upwards	for	AS,	MF,	MH,	and	JG	and	±10°	for	AM	and	HC.	Luminance	contrast	polarity	values	were	set	
at	their	maximum	value	of	±1,	giving	a	Weber	contrast	of	100%	against	the	mean	grey	background.		

	
Figure	S4.	Stimuli	and	results	for	Experiment	S4	examining	judgements	of	motion	and	luminance	contrast	polarity.	A.	Example	
stimuli	when	all	black.	B.	Example	stimuli	when	contrast	polarity	differed	between	the	target	(here,	white)	and	flankers	
(black).	C.	Results	from	the	strong	motion	+	weak	contrast	polarity	condition.	Data	is	plotted	as	the	mean	proportion	correct	
for	the	target	direction	(x-axis)	and	contrast	polarity	(y-axis)	±1	SEM,	as	in	Figure	3	of	the	main	text,	with	example	target-
flanker	values	shown	via	the	legend.		

Observers	made	conjoint	judgements	of	the	direction	(CW/CCW	of	upwards)	and	contrast	polarity	
(black/white)	of	the	target	cowhide	for	unflanked	targets	and	in	one	flanked	condition	(strong	motion	+	
weak	contrast	polarity).	Following	Experiment	S3	above,	the	flanked	condition	included	4	flankers	
(above,	below,	left	and	right	of	the	target).	When	flankers	were	present,	their	directions	were	similar	
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(±15°)	in	order	to	induce	strong	crowding	for	motion.	Contrast	polarity	values	were	set	to	their	
maximum	contrast	difference	(±1)	to	give	maximally	strong	crowding	when	target	and	flanker	elements	
were	matched	in	polarity	and	maximally	weak	crowding	when	polarity	differed.	Given	the	above	issues	
with	the	dimensionality	of	contrast	polarity,	we	did	not	test	the	converse	arrangement	with	large	
directional	differences.	Unflanked	and	flanked	conditions	were	tested	in	separate	blocks.	Each	
combination	of	target	and	flanker	elements	was	repeated	10	times	per	block	to	give	a	total	of	40	trials	
in	the	unflanked	condition	and	160	trials	for	the	flanked	condition.	Each	block	was	repeated	3	times,	
with	all	blocks	interleaved	randomly.		

With	these	combinations	of	direction	and	contrast	polarity,	there	were	4	possible	combinations	of	
target	and	flanker	elements	with	respect	to	the	decision	boundary	for	each	feature	dimension:	either	
both	motion	and	contrast	polarity	matched	(e.g.	CW	moving	target	and	flankers,	all	black),	motion	
differed	(e.g.	a	CW	target	with	CCW	flankers,	all	white),	contrast	polarity	differed	(e.g.	a	white	target	
with	black	flankers,	all	moving	CW),	or	both	differed.	Given	the	known	effects	of	differences	in	contrast	
polarity	on	crowding	(10-12),	judgements	of	contrast	polarity	should	be	correct	in	conditions	where	
this	property	differs	(‘polarity	differs’	and	‘both	differ’).	They	should	also	be	correct	when	target	and	
flanker	elements	share	the	same	contrast	polarity	(‘both	match’	and	‘motion	differs’),	either	because	
there	is	no	crowding	or	because	responses	are	driven	by	assimilative	errors.	The	crucial	aspect	of	this	
experiment	is	the	motion	judgements,	particularly	in	the	‘both	differ’	condition.	Here	the	all-or-none	
combined	mechanism	predicts	errors	in	either	both	features	or	neither,	while	the	independent	
mechanism	allows	a	reduction	in	crowding	in	contrast	polarity	without	any	effect	on	motion	(i.e.	that	
motion	errors	should	remain	high).		

With	an	unflanked	target,	observers	correctly	identified	its	direction	in	83.89	±	3.12%	(mean	±	SEM)	of	
trials,	and	its	contrast	polarity	in	98.19	±	0.82%	of	trials.	Figure	S4C	shows	mean	responses	for	the	
flanked	condition,	where	target-flanker	differences	were	small	in	motion	(to	give	strong	crowding)	and	
large	in	contrast	polarity	(to	give	a	release	when	target	and	flanker	elements	differed).	When	target	and	
flankers	were	matched	in	both	features	(red	point),	performance	was	high	for	both	features.	In	the	
motion	differs	condition,	the	small	target-flanker	direction	difference	induced	a	high	rate	of	assimilative	
motion	errors	and	low	rate	of	contrast	polarity	errors,	again	because	target	and	flanker	elements	
remained	matched	in	polarity.	Judgements	of	polarity	continued	to	be	accurate	in	the	polarity	differs	
condition,	given	the	large	contrast-polarity	difference	(replicating	prior	findings	with	polarity	
differences;	10,	11,	12),	while	the	matched	target-flanker	signs	for	direction	allowed	correct	responses	
in	both	features.	Crucially,	the	both	differ	condition	again	revealed	a	dissociation	–	the	large	differences	
in	target-flanker	polarity	coupled	with	a	small	difference	in	direction	produced	errors	in	direction	
responses	despite	correct	responses	for	contrast	polarity.	In	other	words,	here	too	crowded	errors	can	
occur	in	one	feature	and	not	the	other.	

Interestingly,	there	is	a	slight	increase	in	the	percent	correct	for	motion	in	the	both	differ	condition,	
relative	to	the	error	rate	for	the	motion	differs	condition	in	this	experiment	(i.e.	a	separation	along	the	x-
axis).	This	difference	was	not	present	in	Experiments	3	or	S3.	One	possibility	is	that	the	opposite	
polarity	elements	did	in	fact	induce	some	degree	of	combined	errors,	perhaps	through	a	reduction	in	
positional	uncertainty	associated	with	the	target	location	(13).	Alternatively,	several	observers	noted	
that	opposite-polarity	targets	would	on	occasion	disappear,	which	may	relate	to	our	use	of	four	flankers	
in	this	experiment,	and	the	rise	in	issues	related	to	detection	as	the	number	of	flankers	increases	(5),	as	
noted	above.	This	may	be	exacerbated	at	the	15°	eccentricity	used	herein	(particularly	in	the	upper	
visual	field;	14,	15),	as	most	studies	that	have	examined	the	release	from	crowding	with	opposite	
polarity	stimuli	have	utilised	closer	eccentricities	of	5-10°	(10-12).	Regardless,	the	reduction	in	these	
errors	still	leaves	a	predominance	of	motion	errors,	in	contrast	to	the	clear	performance	levels	(above	
90%	correct)	for	contrast	polarity	judgements	–	motion	judgements	never	approach	this	level	of	
performance.		

The	observed	pattern	of	errors	again	follows	the	prediction	of	independent	crowding	processes	for	
motion	and	luminance	contrast	polarity,	extending	our	findings	with	direction	and	hue.	This	finding	
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does	however	stand	at	odds	with	prior	demonstrations	that	crowding	is	reduced	for	judgements	of	
spatial	form	(like	T	orientation)	when	target	and	flanker	elements	differ	in	contrast	polarity	(10-12).	As	
outlined	in	the	main	discussion,	the	linkage	found	in	these	prior	studies	could	reflect	the	greater	
similarity	between	contrast	polarity	and	spatial	form	than	between	polarity	and	motion.	Indeed,	
contrast	polarity	and	motion	have	been	found	not	to	interact	at	higher	levels	of	the	motion	hierarchy	
(16).	Features	that	are	more	closely	related	in	the	visual	system,	like	orientation	and	position	(17),	may	
therefore	show	linked	performance	patterns,	while	more	distinct	feature	pairings	like	direction	and	hue	
or	direction	and	polarity	allow	these	dissociable	effects	to	emerge.		

Note	also	that	prior	studies	showing	a	combined	release	for	polarity	and	form	(10-12)	typically	utilise	
spatial	letterforms	(e.g.	T	elements)	defined	by	the	differential	features	themselves.	That	is,	the	
colour/polarity	signals	define	both	the	object	surface	and	its	boundary	(18),	making	the	spatial	
distribution	of	luminance-polarity	signals	informative	regarding	the	feature	being	judged.	This	may	
then	allow	the	differences	in	polarity	to	reduce	crowding	for	spatial	form	simply	because	the	form	
signals	for	the	target	are	derived	from	the	(uncrowded)	output	of	the	polarity	channels.	The	same	is	
true	for	studies	showing	a	release	in	orientation	crowding	with	colour	differences	(11,	19,	20).	
Dissociations	may	only	become	evident	when	features	can	be	judged	independently,	as	in	the	current	
study	where	these	features	apply	only	to	the	object	surfaces	(given	that	our	circular	object	boundaries	
were	always	held	constant).		

Population	models	for	the	crowding	of	motion	and	colour	

As	shown	in	the	main	text,	data	from	Experiments	1	and	2	were	fit	with	two	population-coding	models	
similar	to	prior	models	of	the	crowding	of	orientation	(21,	22).	This	approach	characterises	crowding	as	
the	weighted	combination	of	population	responses	to	the	target	and	flanker	elements,	which	has	
previously	been	found	to	reproduce	the	systematic	errors	that	arise	(21),	including	both	averaging	(23,	
24)	and	substitution	(25)	errors.	Here	we	sought	to	extend	this	modelling	approach	to	the	domains	of	
motion	and	colour	perception.	To	replicate	the	results	of	Experiment	1,	we	simulated	a	population	of	
361	direction-selective	neurons,	each	with	a	wrapped	Gaussian	profile	of	responses	to	direction,	similar	
to	those	found	in	cortical	areas	V1	(26)	and	MT/V5	(27),	characterised	as:		

𝑟" = 𝛼𝑒
('('))+

+,+ + γ𝑛	 	 	 	 	 	 (1)	

where	rq	is	the	response	of	the	detector	for	a	given	value	of	q,	the	direction	ranging	from	±180	around	
upwards.	The	value	a	sets	the	height	of	the	tuning	function	(set	to	1),	µ	is	the	direction	of	peak	
response,	s	represents	the	standard	deviation	of	the	Gaussian	(the	first	free	parameter),	plus	Gaussian	
noise	n	with	a	magnitude	of g (the	second	free	parameter).	Responses	outside	the	range	±180	were	
wrapped	by	either	subtracting	or	adding	360	to	the	direction	and	summing	the	responses.	Each	of	these	
detectors	had	a	distinct	preferred	direction	at	one	of	the	integer	directions	from	±180°.	Flanker	
population	responses	had	the	same	form	(including	the	same	standard	deviation),	with	a	separate	free	
parameter	for	the	g	value,	representing	a	late	noise	parameter.		

Given	the	presence	of	repulsion	in	our	data	(similar	to	the	pattern	of	direction	repulsion	more	broadly;	
28,	29),	we	followed	models	of	the	tilt	illusion	(30-33),	and	the	physiology	of	MT/V5	neurons	(34),	by	
adding	inhibitory	surrounds	to	the	population	response.	This	is	also	similar	to	weighted	averaging	
models	of	crowding	that	simulate	repulsive	errors	using	negative	weights	(2).	Here	we	incorporated	
inhibitory	interactions	via	a	second	Gaussian	distribution	(as	in	equation	1),	with	a	peak	of	0.3	for	the	
population	responses	to	the	target	and	1.0	for	flankers	(to	be	modulated	by	flanker	weights,	below),	
with	the	standard	deviation	of	this	distribution	as	the	fourth	free	parameter.	This	distribution	was	then	
subtracted	from	the	excitatory	Gaussian	response	described	above.	The	peak	of	0.3	was	selected	given	
physiological	estimates	that	place	the	strength	of	inhibition	at	around	30-40%	that	of	excitation	in	early	
visual	cortex	(35).	Values	of	0	and	0.5	for	the	target	population	were	also	simulated,	which	did	not	alter	
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the	pattern	of	results	in	a	qualitative	fashion	(though	parameters	varied	to	accommodate	this	inhibition	
of	the	flankers).		

Population	responses	were	determined	for	both	the	target	and	flanker	directions	separately.	These	
responses	were	combined	according	to	weights,	as	in	prior	models	(17,	21,	22,	24,	36).	Variations	in	
these	weights	have	previously	been	used	to	reproduce	the	decrease	in	crowding	with	increasing	target-
flanker	distance	(21,	22,	37)	via	‘weighting	fields’.	Target-flanker	distance	was	fixed	in	our	study,	
though	we	utilise	this	weighting-field	concept	to	allow	the	decrease	in	crowding	with	increasing	target-
flanker	dissimilarity	(11,	20,	37,	38).	In	doing	so,	we	follow	suggestions	that	both	of	these	properties	
may	in	fact	manipulate	the	cortical	distance	between	target	and	flanker	representations	(37,	39,	40).	
Because	our	population	used	both	positive	and	negative	components,	two	weighting	fields	were	applied	
separately	(similar	to	prior	work;	37).	Positive	weights	varied	from	0-1	and	were	determined	using	a	
Gaussian	distribution	(as	in	equation	1,	though	without	noise),	set	as	a	function	of	the	target-flanker	
difference	in	direction	(rather	than	absolute	direction	above),	centred	on	a	difference	of	0.	The	peak	and	
standard	deviation	were	each	set	by	free	parameters.	Negative	weights	also	varied	from	0-1	and	were	
set	by	a	bimodal	Gaussian	distribution	of	the	form:	

𝑤∆" = 𝛼𝑒
('(')2)+

+,+ + 𝛼𝑒
('(')+)+

+,+ 	 	 	 	 	 (2)	

where	w	gives	the	flanker	weight	for	a	given	difference	in	direction	(∆θ),	while	the	peak	a	and	standard	
deviation	s	were	matched	for	each	Gaussian.	The	peak	was	set	as	a	free	parameter,	as	well	as	the	
difference	between	the	peak	locations	(µ2-µ1),	with	the	overall	distribution	centred	on	zero.	The	
standard	deviation	was	the	same	value	used	in	the	positive	weighting	field.	The	shape	of	this	function	
allowed	for	the	peak	in	inhibitory	interactions	at	large	target-flanker	differences	where	repulsion	
effects	were	dominant	over	assimilation	(see	Figure	1C).	Overall	however,	both	components	varied	with	
the	direction	difference	between	target	and	flanker	elements	to	modulate	the	strength	of	these	
crowding	effects.	The	best-fitting	weighting	fields	are	plotted	in	Figure	S5A,	which	plot	the	change	in	
flanker	weights	as	a	function	of	the	target-flanker	difference	in	direction.	The	corresponding	target	
weight	was	always	1	minus	the	flanker	weight	for	both	positive	and	negative	components.		

For	a	given	trial	of	the	simulated	experiment,	flanker	weight	values	were	first	selected	according	to	the	
difference	between	target	and	flanker	directions.	These	values	were	then	used	as	multipliers	for	the	
positive	and	negative	components	of	the	population	response	to	the	flanker	direction.	Altogether	then,	
flanked	responses	C	were	determined	as	function	of	the	direction	𝜃,	with	the	form:	

𝐶" = (𝑟67𝑤67 − 𝑟69𝑤69) + :𝑟;7𝑤;7 − 𝑟;9𝑤;9<	 	 	 	 (3)	

where	rte	represents	the	excitatory	Gaussian	population	response	to	the	target	(following	equation	1),	
rti	is	the	inhibitory	response,	and	rfe	and	rfi	the	excitatory	and	inhibitory	flanker	responses,	respectively.	
Weight	values	are	denoted	as	wfe	for	the	excitatory	flanker	values	and	Wfi	as	the	inhibitory	weight.	For	
the	target	wte	is	1-wfe	and	wti	is	1-wfi.		

This	combination	of	responses	and	weighting	values	for	the	population	response	to	flankers	is	plotted	
in	Figure	S5B	for	a	continuous	range	of	target-flanker	differences	(flanker	values	tested	in	Experiment	1	
are	shown	with	black	points).	Responses	are	plotted	as	a	function	of	the	preferred	direction	of	each	
detector	in	the	population	on	the	x-axis	against	the	target-flanker	difference	on	the	y-axis.	The	
population	response	to	a	single	flanker	direction	can	be	seen	by	taking	a	horizontal	slice	across	the	plot,	
with	red	areas	indicating	a	predominance	of	positive	flanker	responses	and	blue	areas	indicating	a	
predominance	of	inhibition.	Note	that	small	target-flanker	differences	near	to	the	0°	decision	boundary	
tend	to	produce	predominantly	positive	flanker	responses,	whereas	larger	target-flanker	differences	
tend	towards	inhibition.		
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Figure	S5.	Model	characteristics	for	the	population-pooling	models	of	Experiments	1	(left	column)	and	2	(right).	A.	Weighting	
fields	for	direction,	plotted	as	a	function	of	the	target-flanker	direction	difference,	separately	for	the	positive	(red)	and	
negative	(blue)	weights.	B.	The	combination	of	flanker	weights	and	the	population	response	to	the	flanker	direction,	plotted	as	
a	function	of	the	preferred	direction	of	each	detector	on	the	x-axis	and	the	target-flanker	direction	difference	on	the	y-axis.	
Flanker	values	tested	in	Experiment	1	are	shown	as	black	points.	Red	values	indicate	a	predominance	of	positive	population	
responses,	while	blue	areas	indicate	inhibition.	C.	Example	population	responses	to	the	target	(red),	flankers	(blue),	and	
combined	response	(yellow)	for	a	target	moving	8°	counter-clockwise	from	upwards	and	flankers	moving	90°	counter-
clockwise,	plotted	as	a	function	of	the	preferred	direction	of	each	detector	on	the	x-axis.	The	veridical	values	of	the	target	and	
flanker	directions	are	shown	as	red	and	blue	triangles,	with	the	peak	response	of	the	combined	distribution	shown	as	a	yellow	
triangle.	This	combination	gives	a	repulsion	error.	D.	Weighting	fields	for	hue	in	Experiment	2,	plotted	with	conventions	in	
panel	A.	E.	The	combination	of	flanker	weights	and	the	population	response	to	hue,	plotted	as	in	panel	B.	F.	Example	
population	responses	for	a	target	with	a	hue	-4.5°	clockwise	from	the	decision	boundary	(blue	in	appearance)	and	flankers	45°	
counter-clockwise	(pink	in	appearance),	which	gives	an	error	of	assimilation.	Plotting	conventions	as	in	panel	C.		
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Example	population	distributions	(averaged	across	1024	trials)	for	a	target	moving	8°	counter-
clockwise	from	upwards	and	flankers	moving	90°	counter-clockwise	are	shown	in	Figure	S5C.	
Distributions	of	target	and	flanker	responses	(red	and	blue	lines,	respectively)	have	had	their	
respective	weights	applied.	The	combined	sum	is	shown	in	yellow.	Veridical	values	of	the	target	and	
flankers	are	shown	as	red	and	blue	triangles.	Notice	that	the	target	and	flanker	directions	are	both	
counter-clockwise,	yet	the	peak	response	for	the	combined	distribution	lies	on	the	clockwise	side	at	-9°	
(yellow	triangle)	to	produce	an	error	of	repulsion.	This	occurs	due	to	the	greater	inhibition	from	the	
flankers	on	the	counter-clockwise	side	of	the	population.	In	contrast,	target-flanker	combinations	
where	the	population	response	to	the	flankers	was	predominantly	positive	tended	to	induce	
assimilation	effects	by	shifting	the	peak	of	the	combined	response	to	intermediate	values	between	the	
target	and	flanker	directions	(see	demonstration	for	colour	below).		

The	perceived	target	direction	was	derived	from	the	peak	response	of	this	combined	population	
response	distribution	(equation	3)	on	each	of	the	simulated	trials,	with	the	sign	of	this	response	used	to	
determine	the	2AFC	(CW/CCW	of	vertical)	response.	Target	and	flanker	direction	conditions	were	
identical	to	those	of	Experiment	1,	with	1024	trials	per	condition	in	the	simulation.	As	with	the	
behavioural	responses,	the	percent	CCW	was	then	computed	for	each	target	direction	in	each	flanker	
direction	condition,	with	psychometric	functions	fit	to	determine	midpoint	and	threshold	values.	The	
squared	difference	between	these	midpoint	and	threshold	values	was	then	taken	from	the	mean	
behavioural	data	of	Experiment	1	to	give	an	error	term.	The	best-fitting	parameters	(for	the	above	8	
free	parameters)	were	determined	first	using	a	coarse	grid	search	through	the	parameter	space	to	find	
the	least	squared	error,	which	was	then	used	as	the	starting	point	for	a	fine	fitting	procedure	using	the	
fminsearch	function	in	MATLAB.	Best-fitting	parameters	from	this	procedure	are	shown	in	Table	S1,	
with	the	output	of	the	model	plotted	against	the	data	in	Figure	1	of	the	main	text.		

Table	S1.	Best-fitting	free	parameter	values	for	the	population-based	crowding	model	for	motion	(Experiment	1)	and	colour	
(Experiment	2).		

Parameter Motion model 
(Experiment 1) 

Colour model 
(Experiment 2) 

Detector SDpositive 65.3691 65.2458 

Detector SDnegative 85.4421 0 

Detector noise 0.0122 0.0044 

Weight field Peakpositive 0.5069 0.2358 

Weight field Peaknegative 0.7077 0 

Weight field SD 70.8827 124.6079 

Weight field Dµnegative 233.5278 0 

Late noise 0.1102 0.0802 

	
A	similar	model	was	developed	to	account	for	the	pattern	of	responses	to	the	colour	task	of	Experiment	
2.	Because	repulsion	was	not	present	in	the	data	obtained	from	this	study,	all	inhibitory	components	of	
this	model	(including	target	and	flanker	responses,	as	well	as	weighting	fields)	were	set	to	zero,	leaving	
5	free	parameters.	The	structure	of	the	model	was	otherwise	identical	to	that	for	motion,	with	a	
population	of	361	hue-selective	neurons	with	a	Gaussian	profile	of	responses	to	the	hue	angle	in	DKL	
colour	space	(41-43).	Each	detector	had	a	preferred	hue	angle	at	one	of	the	integer	values	in	the	space	
with	a	Gaussian	tuning	function	on	either	side,	consistent	with	suggestions	from	both	physiological	(44)	
and	psychophysical	results	(45),	and	is	used	here	for	ease	of	comparison	across	features.		

The	best-fitting	weighting	field	for	colour	is	shown	in	Figure	S5D.	Notice	that	the	absence	of	inhibitory	
weighting	fields	meant	that	the	sole	effect	of	crowding	in	the	domain	of	colour	was	to	induce	
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assimilative	errors.	This	can	be	seen	with	the	combination	of	the	weighting	field	and	flanker	population	
responses	across	a	range	of	flanker	hue	angles	plotted	in	Figure	S5E.	As	before,	these	values	were	
produced	by	combining	the	flanker	response	to	a	continuous	range	of	target-flanker	differences	with	
the	weighting	field	values	for	those	same	target-flanker	differences	(with	the	flanker	values	tested	in	
Experiment	2	presented	as	black	points).		

As	with	motion,	the	combined	population	response	was	generated	by	summing	the	responses	to	target	
and	flanker	directions.	Example	population	distributions	for	a	target	with	a	hue	angle	-4.5°	clockwise	
from	the	blue/purple	decision	boundary,	and	flankers	with	a	30°	counter-clockwise	hue	are	shown	in	
Figure	S5F.	When	combined	(yellow	line)	the	assimilative	nature	of	crowding	can	be	seen	–	here	the	
peak	response	for	the	combined	distribution	lies	on	the	counter-clockwise	side	at	2°	(yellow	triangle).	
Best-fitting	parameters	(for	the	5	free	parameters)	were	determined	using	the	same	procedure	as	for	
motion,	and	are	presented	in	Table	S1,	with	the	output	of	this	model	plotted	against	the	data	in	Figure	2	
of	the	main	text.		

Figures	1	and	2	show	that	the	best-fitting	output	of	these	models	provides	a	good	characterisation	of	
the	pattern	of	errors	observed	for	motion	and	colour	crowding,	and	particularly	in	the	case	of	motion	
crowding.	We	note	that	prior	models	have	used	a	similar	difference-of-Gaussian	approach	to	model	
errors	of	repulsion	in	the	domain	of	orientation,	with	mixed	results	(30-33).	The	improved	performance	
of	the	model	in	the	present	study	likely	derives	from	our	addition	of	a	weighting	field	(21),	which	allows	
a	smooth	transition	from	predominantly	assimilative	errors	at	small	target-flanker	differences	through	
to	strongly	repulsive	errors	with	larger	differences	(for	motion,	at	least).	Because	the	weighting	field	
modulates	the	noise	introduced	by	flankers	(the	‘late	noise’	parameter),	this	approach	can	also	replicate	
the	rise	and	fall	of	threshold	elevation	seen	in	Figures	1C	and	2C.	Although	the	use	of	these	weighting	
fields	will	likely	need	adjustments	to	account	for	the	many	complexities	of	crowding	(46),	here	we	show	
their	generalizability	to	the	domains	of	motion	and	colour.	In	this	way	we	also	reproduce	the	general	
coupling	between	bias	and	threshold	observed	in	a	range	of	perceptual	contexts	(47).		

Independent	population	models	for	the	crowding	of	motion	and	colour	

The	results	of	Experiment	3	followed	our	predictions	for	independent	crowding	processes	for	motion	
and	colour.	Here	we	quantify	these	processes	with	a	population	coding	approach.	The	independent	
model	consisted	of	population	responses	to	motion	and	colour,	generated	for	both	target	and	flanker	
elements	and	combined	according	to	separate	weighting	fields	for	both	features.	These	separate	
weighting	fields	allowed	for	crowding	to	occur	for	one	feature	(with	small	target-flanker	differences,	
e.g.	in	colour)	and	not	in	the	other	(with	larger	target-flanker	differences,	e.g.	in	motion).	The	majority	
of	model	properties	were	carried	forward	from	Experiments	1	and	2,	including	the	standard	deviation	
of	detector	tuning	functions,	as	well	as	the	peak	height	and	standard	deviation	of	the	positive	weighting	
field,	as	in	Table	S1.	Inhibitory	parameters	were	included	for	the	motion	population.	This	left	3	free	
parameters:	early	noise	for	direction,	early	noise	for	hue,	and	the	combined	late	noise	parameter	for	
both	features.	Note	that	the	latter	noise	parameter	applied	to	the	flanker	population	responses	(which	
was	then	combined	with	the	target	population	response).	Since	this	was	modified	by	the	weights	for	
each	feature,	we	used	a	single	parameter	for	both	features	to	reduce	the	number	of	free	parameters	and	
for	greater	ease	of	comparison	with	the	combined	models.		

Because	the	precise	direction	and	hue	values	varied	between	participants	in	this	experiment	(see	
values	in	the	main	text),	we	used	the	modal	value	for	each	as	the	input	for	the	model.	This	gave	a	target	
direction	difference	of	±8°	and	a	hue	angle	difference	of	±5°.	For	direction,	flankers	differed	by	±15°	and	
±165°	for	the	strong	and	weak	motion	crowding	conditions.	Flanker	hue	angles	were	±30°	and	±150°.	
Each	trial	simulated	the	population	response	to	target	and	flanker	values	for	both	motion	and	colour.		

For	the	independent	model,	separate	weighting	fields	were	used	to	convert	the	target-flanker	
differences	in	direction	and	hue	into	flanker	weights.	These	were	identical	to	those	of	the	first	two	
experiments.	Weights	were	applied	to	target	and	flanker	population	responses	to	generate	a	combined	
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population	response	for	each	feature.	Each	peak	response	was	then	used	to	determine	whether	
responses	would	be	CW/CCW	for	motion	and	for	hue,	with	percent	correct	determined	across	trials.	

The	3	free	parameters	were	fit	by	determining	the	least-squared	error	between	the	percent	correct	
scores	for	motion	and	colour	in	each	of	the	four	crowding-strength	conditions	(unflanked,	strong	
motion	+	strong	colour,	weak	motion	+	strong	colour,	and	strong	motion	+	weak	colour).	Performance	
was	simulated	with	1024	trials	per	point.	As	before,	a	coarse	grid	search	was	conducted	through	the	
parameter	space	prior	to	a	fine	fitting	procedure.	Final	parameters	are	shown	in	Table	S2,	with	the	
output	of	this	model	plotted	in	Figure	3	of	the	main	text.		

Table	S2.	Best-fitting	free	parameter	values	for	the	independent	crowding	model	and	an	alternative	version	of	this	model	
without	inhibitory	parameters,	both	used	to	simulate	the	data	of	Experiment	3.		

Parameter Independent model 
 

Independent model 
(no inhibition) 

Direction noise 0.0126 0.0353 

Colour noise 0.0057 0.0038 

Late noise 0.0408 0.0713 

	
For	the	strong	motion	+	strong	colour	condition,	shown	in	Figure	3A,	the	independent	model	follows	
the	pattern	of	data	well	because	the	probability	of	crowding	(with	two	weighting	fields)	is	high	for	both	
features,	producing	assimilative	errors.	In	the	weak	motion	+	strong	colour	condition	(Figure	3B),	the	
model	successfully	captures	the	pattern	of	performance	because	the	separate	weighting	fields	for	the	
two	features	allow	crowding	to	be	independently	decreased	in	motion,	leaving	colour	errors	in	the	both	
differ	condition.	Conversely,	the	model	again	reproduces	performance	in	the	strong	motion	+	weak	
colour	condition	(Figure	3C)	because	crowding	can	be	reduced	for	colour	and	remain	strong	for	motion,	
leading	to	a	high	rate	of	motion	errors	when	both	differ.	It	is	therefore	plausible	that	human	
performance	could	rely	on	independent	crowding	mechanisms	of	this	nature.		

In	the	following	section,	we	outline	a	range	of	combined	crowding	models	in	an	attempt	to	more	
quantitatively	rule	out	the	combined	mechanism.	Several	of	these	approaches	remove	the	inhibitory	
aspects	of	the	model	for	simpler	comparison	across	the	feature	dimensions.	In	order	to	more	directly	
compare	these	models	with	the	independent	crowding	model,	we	also	simulated	the	above	independent	
model	with	inhibitory	parameters	set	to	zero	(both	in	population	responses	and	the	corresponding	
weighting	fields).	Best-fitting	parameters	are	shown	in	Table	S2.	Mean	squared	error	values	for	1000	
simulations	of	the	Independent	model	without	inhibition	was	0.1086,	slightly	worse	than	the	value	of	
0.0752	obtained	for	the	above	model	with	inhibition.	The	removal	of	inhibition	thus	impaired	
performance	of	this	model	to	some	extent,	though	both	versions	of	the	independent	model	vastly	
outperformed	any	of	the	combined	mechanisms	tested	below	(see	Figure	S7).		

Combined	population	models	for	the	crowding	of	motion	and	colour	

The	results	of	Experiment	3	and	associated	simulations	demonstrate	that	crowding	is	most	likely	to	be	
subserved	by	independent	processes	for	motion	and	colour.	In	order	to	more	comprehensively	rule	out	
the	possibility	that	a	combined	mechanism	could	perform	similarly	well	in	these	experiments,	we	
simulated	a	range	of	models	with	this	combined	all-or-none	mechanism.	These	models	were	similar	in	
operation	to	the	independent	models	described	above,	save	for	the	use	of	common	weights	for	the	two	
features.	Here	we	show	that	these	models	all	fail	to	fully	account	for	the	observed	dissociations	in	
motion	and	colour	crowding.	

Some	assumptions	must	be	made	in	developing	a	combined	mechanism	for	two	features.	If	we	begin	
with	a	model	that	is	otherwise	identical	to	the	independent	approach	described	above,	then	motion	and	
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colour	estimates	are	derived	from	each	population	of	detectors	for	both	target	and	flanker	elements.	
Responses	to	the	target	and	flankers	must	then	be	combined	with	weights.	Consider	first	a	model	that	
retains	the	two	best-fitting	weighting	fields	derived	from	Experiments	1	and	2,	but	which	takes	the	
minimum	value	obtained	from	these	fields	and	applies	it	equally	to	flankers	on	both	features	(with	one	
minus	this	value	applied	to	target	responses).	In	this	case,	if	crowding	is	reduced	for	one	feature	(based	
on	a	low	weight	for	motion,	for	instance)	then	it	is	necessarily	reduced	for	both.	By	retaining	all	aspects	
of	the	best-fitting	models	derived	for	the	first	two	experiments,	we	can	fit	this	model	using	only	three	
free	parameters	(direction	noise,	colour	noise,	and	late	noise),	making	the	model	directly	comparable	to	
the	independent	models	described	above.	Parameters	were	determined	using	the	fitting	approach	
described	above,	with	best-fitting	parameters	reported	in	Table	S3	(‘Min.	weight’).		

The	output	of	these	best-fitting	simulations	is	shown	in	the	left	column	of	Figure	S6	(square	data	
points),	plotted	with	conventions	as	in	Figure	3.	Results	from	the	strong	motion	+	strong	colour	
condition	are	shown	in	Figure	S6A,	where	the	model	successfully	captures	the	pattern	of	error	for	
colour	(data	points	and	model	simulations	align	on	the	y-axis)	but	under-predicts	the	rate	of	error	for	
motion	(particularly	for	the	motion	error	and	both	error	conditions),	where	data	is	shifted	on	the	x-axis.	
This	occurs	because	the	lower	overall	rate	of	colour	crowding	determines	the	strength	of	crowding	for	
both	features	(i.e.	because	the	weighting	field	for	colour	has	a	lower	peak	value,	it	drives	performance	
when	the	minimum	crowding	value	is	taken).	The	model	fares	even	worse	in	the	weak	motion	+	strong	
colour	condition	(Figure	S6B)	where	the	reduction	in	crowding	for	motion	predicts	that	responses	
should	be	predominantly	correct	on	both	features.	The	low	rate	of	errors	in	this	case	is	driven	by	the	
large	direction	difference,	which	gives	a	low	weight	that	is	then	applied	to	both	motion	and	colour.	The	
model	similarly	fails	to	predict	sufficient	errors	in	the	strong	motion	+	weak	colour	condition	(Figure	
S6C)	given	the	reduced	weights	for	colour	that	are	equally	applied	to	motion.	Altogether,	the	model	fails	
to	capture	the	errors	made	by	observers.	

Table	S3.	Best-fitting	free	parameter	values	for	combined	all-or-none	models	of	crowding	used	to	simulate	the	data	of	
Experiment	3,	which	either	take	the	minimum	(‘Min.	weight’)	or	maximum	(‘Max.	weight’)	weights	for	crowding	on	both	
features.		

Parameter Min. weight Min. weight 
(no inhibition) 

Max. weight Max. weight 
(no inhibition) 

Direction noise 0.0309 0.0365 0.0120 0.0192 

Colour noise 0.0114 0.0101 0.0062 0.0090 

Late noise 0.0634 0.0121 0.0948 0.1879 

	
It	is	possible	that	part	of	the	failure	of	this	combined	mechanism	could	reflect	differences	in	the	
underlying	populations	of	detectors.	Most	notably,	the	population	of	motion	detectors	involves	both	
excitatory	and	inhibitory	interactions	whereas	colour	interactions	are	purely	excitatory.	We	therefore	
set	these	inhibitory	values	to	zero	for	both	populations	and	associated	weighting	fields	and	re-fit	the	
combined	mechanism,	again	taking	the	minimum	weight	for	each	feature	as	above.	Best-fitting	
parameters	for	this	model	are	shown	in	Table	S2,	listed	as	‘Min.	Weight.	(no	inhibition)’,	and	the	output	
of	this	model	plotted	against	data	in	Figure	S6,	panels	A-C	(diamonds).	The	model	performs	similarly	to	
the	combined	model	with	inhibition	and	again	fails	to	predict	the	dissociable	errors	produced	by	our	
observers.		

We	next	consider	a	combined	model	where	flanker	weights	were	taken	as	the	maximum	value	obtained	
from	the	weighting	fields	for	motion	and	colour.	Here,	if	crowding	was	strong	in	either	feature	then	it	
was	strong	in	both.	The	model	was	otherwise	identical	to	that	described	above.	Beginning	with	a	model	
that	includes	the	inhibitory	parameters	for	the	motion	population,	best-fitting	parameters	are	shown	in	
Table	S3,	listed	as	‘Max.	weight’.		
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Figure	S6.	Simulations	of	the	data	in	Experiment	3	by	combined	models	of	crowding.	As	in	Figure	3,	each	panel	plots	the	
percent	correct	for	the	target	direction	on	the	x-axis	and	target	hue	on	the	y-axis.	Colours	show	the	4	target-flanker	match	
cases:	where	the	2AFC	sign	in	each	feature	matches	for	both	(red	points),	where	the	motion	differs	(green),	the	colour	alone	
differs	(blue),	or	both	differ	(purple).	Data	points	from	Experiment	3	are	shown	as	circles	with	reduced	opacity.	Model	outputs	
are	shown	for	combined	models	taking	the	minimum	(left	panels)	or	maximum	(right)	weight	across	the	two	features.	In	each	
case	models	are	compared	with	inhibitory	parameters	(squares),	without	(diamonds),	or	with	a	common	weighting	field	
(triangles).	All	points	show	the	mean	±1	SEM.	Panels	A.	and	D.	show	data	and	simulations	for	the	strong	motion	+	strong	colour	
crowding	condition.	Panels	B.	and	E.	show	the	weak	motion	+	strong	colour	crowding	condition.	Panels	C.	and	F.	show	the	
strong	motion	+	weak	colour	condition.		

The	output	of	this	model	is	shown	in	Figure	S6D	for	the	strong	motion	+	strong	colour	condition	
(squares).	Here	the	all-or-none	model	does	well	because	the	strength	of	crowding	is	strong	in	both	
features,	driven	primarily	by	the	higher	weights	for	motion	crowding.	Interestingly,	the	model	also	
performs	well	in	the	weak	motion	+	strong	colour	condition	(Figure	S6E),	matching	the	high	degree	of	
colour	errors	with	a	reduction	in	motion	errors.	Model	outputs	do	however	diverge	in	the	strong	
motion	+	weak	colour	condition	(Figure	S6F),	where	the	model	predicts	a	high	degree	of	errors	in	both	
features,	contrary	to	the	observed	reduction	in	colour	errors	for	our	observers.		
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The	ability	of	the	model	to	mimic	independent	processes	in	the	weak	motion	+	strong	colour	condition	
is	primarily	due	to	differences	in	the	stimuli	used	for	these	features.	Note	that	model	inputs	for	the	
strong	crowding	conditions	were	±15°	for	direction	and	±30°	for	hue	(matching	the	values	used	for	our	
observers).	With	the	same	weight	applied	to	both	features,	the	larger	difference	for	the	hue	values	has	a	
greater	‘pull’	on	the	target	response	distribution	(particularly	given	the	broad	tuning	of	detectors	in	
these	populations),	increasing	the	chance	of	errors	for	colour.	This	can	be	seen	in	the	strong	motion	+	
strong	colour	condition,	where	colour	errors	are	higher	than	motion	errors	in	the	both	differ	condition	
(with	both	driven	by	the	±15°	direction	weights).	In	the	weak	motion	+	strong	colour	condition,	the	
higher	likelihood	of	these	colour	errors	therefore	pushes	responses	into	the	‘colour	errors’	quadrant,	
despite	the	overall	reduction	in	weights	(given	the	lower	±30°	colour	weights	here).	In	contrast,	the	
strong	motion	+	weak	colour	condition	is	driven	by	higher	weight	values	(again	given	the	smaller	
difference	for	flanker	directions	than	for	hues),	pushing	errors	back	into	the	‘both	errors’	quadrant.	In	
other	words,	the	asymmetric	performance	of	these	maximum-probability	models	is	driven	by	the	
different	flanker	values	selected	for	motion	and	colour.	Indeed,	running	these	models	with	identical	
values	for	both	features	produces	a	more	symmetric	output	where	the	model	either	responds	with	
errors	for	both	features	or	neither.	Nonetheless,	although	the	best-fitting	parameters	could	mimic	an	
independent	model	in	some	conditions,	the	same	model	necessarily	fails	in	others.	

As	with	the	minimum-weight	models	above,	we	also	re-fit	this	model	with	all	inhibitory	parameters	set	
to	zero.	Best-fitting	parameters	are	shown	in	Table	S3,	with	outputs	shown	in	Figure	S6	(diamonds).	
Removing	inhibition	does	not	improve	the	performance	of	the	model.	

Finally,	it	is	possible	that	these	combined	models	underperformed	because	the	weighting	field	for	each	
feature	dimension	had	distinct	parameters,	as	carried	forward	from	Experiments	1	and	2	(despite	the	
same	value	being	applied	to	both	features	on	each	trial).	We	therefore	developed	a	model	with	a	
common	weighting	field,	using	an	additional	two	free	parameters	to	fit	the	peak	and	SD	values	of	the	
weights	to	the	data	from	Experiment	3.	To	simplify	this	approach	and	reduce	the	number	of	free	
parameters,	inhibitory	parameters	were	set	to	zero	for	these	models.	Even	with	a	common	weighting	
field,	we	still	need	to	take	either	the	minimum	or	maximum	weight	derived	from	the	two	features	in	
order	to	determine	whether	crowding	is	maintained	or	released	for	both	when	discrepancies	arise.	We	
thus	simulated	both	minimum-	and	maximum-weight	models.	Remaining	model	details	were	as	in	the	
other	versions	of	this	model,	as	was	the	fitting	procedure.	Best-fitting	values	of	the	5	free	parameters	in	
these	two	models	are	shown	in	Table	S4.		

Table	S4.	Best-fitting	free	parameter	values	for	the	combined	all-or-none	models	of	crowding	with	a	single	weighting	field	to	
simulate	the	data	of	Experiment	3.	Parameters	are	shown	for	one	model	that	takes	the	minimum	flanker	weight	from	the	
weighting	field	for	the	two	features	and	another	that	takes	the	maximum.	

Parameter One weighting field  
(minimum weight) 

One weighting field  
(maximum weight) 

Direction noise 0.0321 0.0229 

Colour noise 0.0061 0.0021 

Late noise 0.1267 0.0638 

Weight Field SD 103.4573 31.2702 

Weight Field Peak 0.5223 0.3126 

	
Consider	first	the	minimum	weight	model	with	a	common	weight	field,	whose	output	is	shown	in	the	
left	panels	of	Figure	S6	(triangles).	In	the	strong	motion	+	strong	colour	crowding	condition	(Figure	
S6A),	the	model	performs	well	because	the	weights	selected	for	both	features	are	high.	Note	that	
percent	correct	performance	for	each	feature	again	differs	because	the	larger	difference	in	the	flanker	
hues	(±30°)	has	a	greater	‘pull’	on	the	target	response	distribution	for	hue	than	does	the	direction	
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difference	(±15°).	This	carries	through	to	the	weak	motion	+	strong	colour	condition	(Figure	S6B),	
where	the	model	comes	closer	to	capturing	the	predominance	of	colour	errors	than	the	other	minimum	
weight	models	(though	still	undershoots	by	around	15%	correct).	As	with	the	other	minimum-
probability	combined	models,	the	predicted	error	rates	are	then	vastly	underpredicted	in	the	strong	
motion	+	weak	colour	condition	(Figure	S6C)	given	the	low	weights	derived	from	the	±150°	flanker	
differences	in	colour.		

The	maximum-weight	model	similarly	fails	to	account	for	observers’	performance,	shown	in	the	right	
panels	of	Figure	S6	(triangles).	In	the	strong	motion	+	strong	colour	crowding	condition	(Figure	S6D),	
the	model	performs	relatively	well	but	under-predicts	the	rate	of	motion	errors	given	the	low	overall	
weighting	field	for	this	model	(see	Table	S4).	In	the	weak	motion	+	strong	colour	condition	(Figure	
S6E),	the	model	performs	as	well	as	other	maximum-probability	models,	given	again	the	greater	pull	of	
the	±30°	flanker	differences	in	hue.	The	overall	reduction	in	flanker	weights	for	this	model	can	then	be	
seen	in	the	strong	motion	+	weak	colour	condition	(Figure	S6F)	where	overall	errors	are	reduced	to	the	
extent	that	the	simulated	responses	fall	largely	within	the	‘both	correct’	quadrant.	On	the	whole,	the	
model	again	fails	to	accurately	capture	the	performance	of	our	observers.		
	

	
Figure	S7.	Akaike	Information	Criterion	(AIC)	values	derived	from	the	best-fitting	independent	and	combined	models	of	
crowding.	Each	distribution	shows	the	AIC	value	for	1000	simulations	of	the	experiment	with	each	model,	where	the	width	of	
the	distribution	indicates	the	frequency	of	the	AIC	value	and	circles	show	the	mean	AIC	value.	Two	independent	models	are	
shown	–	one	is	the	form	shown	in	Figure	3	of	the	main	text,	the	second	excludes	the	inhibitory	parameters	in	the	direction-
selective	population.	All	6	combined	models	show	more	positive	AIC	values,	indicating	worse	fits.	This	is	true	for	the	combined	
models	taking	the	minimum	or	maximum	weight,	those	with	or	without	inhibition,	and	those	with	a	specifically	fit	weighting	
field.		

In	order	to	compare	these	models	more	quantitatively,	1000	simulations	were	run	for	each	of	the	above	
2	independent	and	6	combined	models.	In	each	case,	simulated	responses	were	subtracted	from	the	
mean	percent	correct	data	in	Experiment	3	to	obtain	squared	error	values.	Given	the	variation	in	the	
number	of	free	parameters,	the	Akaïke	Information	Criterion	(AIC;	48)	was	computed	for	model	
comparison.	The	resulting	mean	and	distribution	of	AIC	values	are	shown	in	Figure	S7	for	each	model,	
where	more	negative	values	indicate	better	fits	to	the	data.	Although	some	variants	of	the	combined	
model	perform	well	in	selected	conditions,	the	independent	models	vastly	outperform	the	combined	
models.	Altogether	then,	both	our	behavioural	evidence	and	the	outcome	of	these	simulations	point	to	
independent	crowding	effects	that	disrupt	the	domains	of	motion	and	colour.		
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MATLAB	code	for	all	of	the	models	described	in	this	manuscript	is	available	at	
http://github.com/eccentricvision	under	MotionColourCrowdModels.		

Movies	depicting	example	trials	

Here	we	present	a	set	of	movies	depicting	example	trials	from	the	main	experiments.	Stimuli	from	
Experiments	1	and	2	are	shown	in	Movie	S1	and	Movie	S2,	respectively.	Each	shows	three	example	
trials:	unflanked,	crowded	with	similar	flankers,	and	crowded	with	dissimilar	flankers.	Movies	depict	
only	the	region	around	the	stimulus	and	thus	exclude	the	fixation	point	(though	the	interested	reader	
can	simulate	crowding	effects	by	viewing	the	movies	peripherally).	Masks	following	the	stimuli	are	not	
shown.		

Movie	S1.	Example	trials	from	Experiment	1	(motion	crowding).	The	first	trial	shows	
an	unflanked	target	stimulus	moving	16°	counterclockwise	of	upwards.	The	second	
shows	a	crowded	target	moving	8°	counterclockwise	of	upwards,	surrounded	by	two	
flankers	moving	15°	clockwise	of	upwards.	The	third	trial	shows	a	crowded	target	
moving	8°	counterclockwise	of	upwards	surrounded	by	flankers	moving	165°	
counterclockwise	of	upwards.		

	

	

	

Movie	S2.	Example	trials	from	Experiment	2	(colour	crowding).	The	first	trial	shows	
an	unflanked	target	stimulus	with	a	hue	angle	3°	clockwise	(purple	in	appearance)	of	
the	262.5°	decision	boundary.	The	second	shows	a	crowded	target	with	a	hue	angle	
4.5°	counterclockwise	(blue)	from	the	decision	boundary,	surrounded	by	two	
flankers	with	hue	angles	15°	clockwise	(purple)	of	upwards.	The	third	trial	shows	a	
crowded	target	with	a	hue	angle	4.5°	counterclockwise	(blue)	surrounded	by	flankers	
with	hue	angles	165°	clockwise	(red).	

	

	

	

The	next	three	movies	show	example	conditions	from	Experiment	3,	in	which	observers	were	required	
to	judge	both	the	direction	and	colour	of	the	target	element.	As	outlined	in	the	main	text,	there	were	
three	possible	combinations	of	flanker	strength.	In	the	first,	crowding	was	strong	for	both	motion	and	
colour,	with	small	target-flanker	differences	for	each	feature	(Movie	S3).	In	the	second,	crowding	was	
weak	for	motion	and	strong	for	colour,	with	large	target-flanker	differences	in	direction	and	small	
differences	in	hue	(Movie	S4).	Finally,	crowding	could	be	strong	for	motion	and	weak	for	colour,	with	
small	target-flanker	differences	in	direction	and	large	differences	in	hue	(Movie	S5).	Each	movie	shows	
four	example	trials,	illustrating	the	four	possible	combinations	of	target	and	flanker	elements	in	each	of	
the	flanker	strength	conditions:	target	and	flanker	elements	either	matched	in	sign	relative	to	the	
decision	boundary	for	both	feature	dimensions	(both	match),	differed	in	motion	(motion	differs),	colour	
(colour	differs),	or	both	(both	differ).		
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Movie	S3.	Example	trials	from	Experiment	3	in	the	strong	motion	+	strong	colour	
flanker	strength	condition.	Targets	were	set	here	to	move	±6°	of	upwards,	with	hue	
angles	that	diverged	±5°	from	the	decision	boundary.	Flankers	were	±15°	in	each	
case.	The	first	example	trial	shows	a	both	match	trial	where	target	and	flanker	
elements	all	move	clockwise	of	upwards,	with	a	counterclockwise	hue	angle	(purple).	
The	second	shows	a	motion	differs	trial,	where	a	clockwise-moving	target	is	
surrounded	by	counterclockwise	flankers,	all	with	clockwise	hue	angles	(blue).	The	
third	shows	a	colour	differs	condition	where	a	blue	target	is	surrounded	by	purple	
flankers,	all	moving	counterclockwise	of	upwards.	Finally,	the	fourth	trial	shows	a	
both	differ	condition	where	a	blue	target	moving	counterclockwise	is	surrounded	by	
purple	flankers	moving	clockwise.		
	

	

Movie	S4.	Example	trials	from	Experiment	3	in	the	weak	motion	+	strong	colour	
flanker	strength	condition.	Flankers	here	had	values	of	±165°	for	direction	and	±15°	
for	hue.	The	first	example	trial	shows	a	both	match	trial	where	target	and	flanker	
elements	all	move	counterclockwise	of	upwards	(though	flankers	are	
counterclockwise-downwards),	with	a	clockwise	hue	angle	(blue).	The	second	shows	
a	motion	differs	trial,	where	a	counterclockwise	moving	target	is	surrounded	by	
clockwise-downward	flankers,	all	with	clockwise	hue	angles	(blue).	The	third	shows	a	
colour	differs	condition	where	a	purple	target	is	surrounded	by	blue	flankers,	all	
moving	counterclockwise	of	upwards.	Finally,	the	fourth	trial	shows	a	both	differ	
condition	where	a	purple	target	moving	clockwise	is	surrounded	by	blue	flankers	
moving	counterclockwise.		
	

	

Movie	S5.	Example	trials	from	Experiment	3	in	the	strong	motion	+	weak	colour	
flanker	strength	condition.	Flankers	here	had	values	of	±15°	for	direction	and	±150°	
for	hue.	The	first	example	trial	shows	a	both	match	trial	where	target	and	flanker	
elements	all	move	counterclockwise	of	upwards,	with	a	clockwise	hue	angle	(5°	blue	
for	the	target	and	165°	green	for	flankers).	The	second	shows	a	motion	differs	trial,	
where	a	clockwise-moving	target	is	surrounded	by	counterclockwise	flankers,	all	with	
clockwise	hue	angles	(blue	and	green).	The	third	shows	a	colour	differs	condition	
where	a	blue	target	is	surrounded	by	red	flankers,	all	moving	counterclockwise	of	
upwards.	Finally,	the	fourth	trial	shows	a	both	differ	condition	where	a	blue	target	
moving	counterclockwise	is	surrounded	by	red	flankers	moving	clockwise.	
	

	

	

Captions	for	SI	Datasets	

Dataset	S1.	Data	from	Experiment	1,	presented	as	the	proportion	of	counterclockwise	responses	for	each	target	direction,	in	
the	unflanked	condition	and	for	flanked	conditions	with	varying	flanker	directions.	Each	observer	is	presented	in	a	separate	
sheet.	

Dataset	S2.	Data	from	Experiment	2,	presented	as	the	proportion	of	counterclockwise	(pink/purple)	responses	for	each	target	
hue	angle,	in	the	unflanked	condition	and	for	flanked	conditions	with	varying	flanker	hue	angles.	Each	observer	is	presented	in	
a	separate	sheet.	

Dataset	S3.	Data	from	Experiment	3,	presented	as	the	proportion	correct	for	each	combination	of	target	direction	and	hue	
values	in	unflanked	conditions,	and	additionally	for	each	combination	of	flanker	direction	and	hue	values	in	the	3	flanked	
conditions.	This	gives	4	possible	target	values	in	unflanked	conditions	and	16	combinations	of	target	and	flanker	values	in	the	
flanked	condition,	which	were	combined	to	give	the	4	target-flanker	match	conditions,	as	plotted	in	Figure	3	of	the	main	
manuscript.	Each	observer	is	presented	in	a	separate	sheet.	
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