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While observers are adept at judging the density of elements (e.g., in a random-dot image), it has recently been proposed
that they also have an independent visual sense of number. To test the independence of number and density discrimination,
we examined the effects of manipulating stimulus structure (patch size, element size, contrast, and contrast-polarity) and
available attentional resources on both judgments. Five observers made a series of two-alternative, forced-choice
discriminations based on the relative numerosity/density of two simultaneously presented patches containing 16–1,024
Gaussian blobs. Mismatches of patch size and element size (across reference and test) led to bias and reduced sensitivity
in both tasks, whereas manipulations of contrast and contrast-polarity had varied effects on observers, implying differing
strategies. Nonetheless, the effects reported were consistent across density and number judgments, the only exception
being when luminance cues were made available. Finally, density and number judgment were similarly impaired by
attentional load in a dual-task experiment. These results are consistent with a common underlying metric to density and
number judgments, with the caveat that additional cues may be exploited when they are available.
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Introduction

Humans possess a formidable ‘‘number sense,’’
allowing them to make number estimates across widely
varying conditions (for review, see Dehaene, 1992). For
example, following habituation, newborn babies and
young infants fixate longer—a measure of attention,
and by inference, perceived novelty—when the numer-
osity of an array of objects is manipulated indepen-
dently of their arrangement, shape, or identity (Antell
& Keating, 1983; Jordan & Brannon, 2006; Starkey,
Spelke, & Gelman, 1990; Xu & Arriage, 2007). In the
adult, this ability extends to judgments under condi-
tions in which counting is not possible: i.e., large
numerosities and short presentation times (Allik &

Tuulmets, 1991; Allik, Tuulmets, & Vos, 1991; Vos,
van Oeffelen, Tibosch, & Allik, 1988). Human observ-
ers are also remarkably adept at judging the density of
objects within a given area (Dakin, Tibber, Green-
wood, Kingdom, & Morgan, 2011; Durgin, 1995;
Durgin & Huk, 1997). However, number and density
are tightly linked, both conceptually (Density ¼
Number/Area) and behaviorally. Weber fractions for
number and density discrimination thresholds are
frequently indistinguishable (Ross & Burr, 2010), and
both dimensions are prone to adaptation following
prolonged viewing (Durgin, 1995).

Given this close association between number and
density, does the visual system need independent
representations of both, or might they be derived from
a common mechanism? This is a contentious issue
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fuelled by a recent study in which Burr and colleagues
(Burr & Ross, 2008b) showed that adaptation to a high
numerosity random-dot array reduces the perceived
numerosity of a subsequently presented patch of test
dots. This led the authors to suggest that numerosity is
a primary visual attribute (or ‘‘distinct qualia,’’ Burr &
Ross, 2008a) that cannot be reduced to other contin-
uous stimulus dimensions, e.g., density or spatial
frequency (Ross & Burr, 2010). This claim has not
gone uncontested. Durgin (2008) showed that, when
number and density are uncoupled by changing the size
of the adapter patch (the region over which the
elements are distributed), adaptation follows the
density of the adapter rather than its numerosity
(Durgin, 2008), suggesting that density is in fact the
adapted dimension (Durgin, 1995). In addition, al-
though not uncontested themselves (Allik, Tuulmets, &
Vos, 1991; Burr & Ross, 2008b; Ross & Burr, 2010),
several studies have shown that number judgments are
sensitive to manipulations of patch size (Tokita &
Ishiguchi, 2010), element size (Ginsburg & Nicholls,
1988; Hurewitz, Gelman, & Schnitzer, 2006; Ross,
2003; Sophian, 2007; Tokita & Ishiguchi, 2010),
element clustering (Frith & Frith, 1972; Ginsburg,
1978, 1991), and total element coverage (Hurewitz,
Gelman, & Schnitzer, 2006; Tokita & Ishiguchi, 2010).
Because a ‘‘pure’’ judgment of number should occur
regardless of these spatial parameters, such findings are
inconsistent with number being extracted as a primary
visual attribute independent of other stimulus dimen-
sions.

An alternative possibility is that number and density
judgments tap into a common mechanism. We have
recently uncovered a particularly close association
between judgments of perceived number and perceived
density (Dakin et al., 2011). Mismatches in overall
patch size of a test and reference stimulus-pair were
found to induce systematic biases (whereby larger
patches appear both more numerous and more dense)
and reduced sensitivity for both density and number
discrimination judgments (see also Tokita & Ishiguchi,
2010). In addition, this study uncovered substantial
intraindividual correlations between both bias and
threshold measurements associated with number and
density discriminations. On the basis of these findings,
we developed a model of number and density
discrimination that rests on the notion of a common
underlying metric derived from the relative output of
pairs of spatial frequency (SF)-tuned filters. This
measure (referred to as the response-ratio) estimates a
crude correlate of density using the ratio of activity
between a high SF filter (which roughly captures
element number) and a low SF filter (whose response
varies in approximate proportion to stimulus area), and
can be weighted by an estimate of relative patch size to
derive a reliable estimate of numerosity1. With just one

free parameter for density judgments, and one for
number judgments (both noise terms), the model
accurately captures observers’ discrimination perfor-
mance under a range of experimental conditions
(Dakin et al., 2011) as well as the effect of element-
type and element-connectivity (He, Zhang, Zhou, &
Chen, 2009). This model directly contradicts the notion
of a dedicated mechanism for visual number extraction
and is constrained by a necessary interdependence
between visual number and density. Further, it predicts
that experimental manipulation of stimulus structure
should similarly affect number and density judgments,
as both are derived from a common metric.

In order to determine the robustness of this
association between perceived number and perceived
density, and thereby test a basic assumption of any
model based on a common metric or processing stage,
we manipulated a range of stimulus attributes that
might conceivably affect number and density perfor-
mance—specifically patch size, element size, luminance
contrast, contrast-polarity, and available attentional
resources—whilst observers performed two-(spatial)-
interval, forced-choice (2-IFC) density and number
discriminations. Although there is a body of literature
on the effects of such manipulations on perceived
number (e.g., Ginsburg, 1978; Ginsburg & Nicholls,
1988; Ross, 2003), to the authors’ knowledge only a
single study to date has made a direct comparison of
their effects on number and density judgments using
identical methodology and stimuli (Dakin et al., 2011).
Further, this only involved manipulation of a single
parameter: patch size. On the basis of the response-
ratio model of density and number estimation, we
predicted that density and number would be similarly
affected by all manipulations tested. Contrary to these
predictions, if density and number are processed
independently by distinct mechanisms, the effects of
stimulus manipulation should be uncorrelated. As we
shall demonstrate, with the exception of one observers’
performance under conditions that rendered local
luminance a useful cue, perceived density and number
judgments were similarly affected by all experimental
manipulations. Further, density and number thresholds
were consistently correlated across all experiments. The
most parsimonious interpretation of these data is that
number and density are derived from a common metric.

General methods

All observers gave informed written consent in
accordance with The Declaration of Helsinki. Each
experiment was performed by five observers taken from
a pool of eight (all experienced psychophysical observ-
ers, five naı̈ve to the purpose of the study). Observers
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made judgments about the relative density or numer-
osity of circular test and reference patches (Figure 1)
presented for 250 ms 6 6.258 left and right of central-
fixation in a series of 2-IFC discriminations. Density
and number judgments were performed in separate
blocks. Patches were composed of a variable number of
small 2D Gaussian blobs (elements) against a back-
ground grey display fixed at 70 cd/m2. To generate
reference and test stimuli, Gaussian blobs (‘‘elements’’)
were randomly dropped within a defined radius (the
‘‘patch’’) with overlaps permitted. Where blobs over-
lapped, Gaussian profiles were added together and
clipped to avoid exceeding the available luminance
range. In order to decorrelate density and number, test
and reference patches were independently varied in size

for all experiments except Experiment 2, where patch
size was fixed to reduce stimulus uncertainty. The
reference always contained 128 elements, whilst the test
patch was set using a method of constant stimuli that
varied stimulus level (density in the density judgments
and number in the number judgments) over a 2-octave
range that was split into seven steps. This was centered
on 100% (i.e., 61 octave) relative to the reference
patch, i.e., a physical match, so that for ‘‘number’’ runs,
tests contained 64, 81, 102, 128, 162, 203, or 256
elements. For ‘‘density’’ runs, test patches were 50, 63,
79, 100, 126, 159, or 200% of the reference density (2.55
or 10.2 elements/deg2 depending on reference size for
Experiments 1 and 2, and 3.5 or 7.1 elements/deg2 for
Experiments 3 to 5). Each run consisted of 112 trials: 16
trials for each of seven stimulus levels, presented
according to the method of constant stimuli. Other
parameters, e.g., element size, varied from experiment
to experiment (see following individual experimental
methods sections). Experiments were programmed
using Matlab (MathWorks, Cambridge, MA) running
on a PC computer with PsychToolbox software
(Brainard, 1997; Pelli, 1997). Stimuli were presented
on a linearized LCD monitor at a spatial and temporal
resolution of 1680 · 1072 pixels and 60 Hz respectively
and viewed binocularly from a distance of 104 cm.
Responses were given by keypress.

Nomenclature

Where referenced in the text, patch size and element
size are denoted by a ‘‘P’’ and ‘‘E’’ respectively. Upper-
case letters indicate the larger sizes (‘‘P’’ and ‘‘E’’), and
lower-case letters indicate the smaller (‘‘p’’ and ‘‘e’’).
Details of the reference patch are presented first in any
description. Hence, a condition described as Pe/pE
reflects a discrimination between a large reference patch
with small elements and a small target patch with large
elements.

Analyses

Raw psychophysical data were fit with a two-
parameter model using the Palamedes fitting routine
(Prins & Kingdom, 2009), which generates parameter
estimates of the slope (a measure of sensitivity) and
mean (a measure of bias) of the underlying cumulative
Gaussian function. Data are presented in raw format
(sensitivity and bias) expressed in octaves. For group
statistical analyses, a series of repeated measures
analyses of variance (ANOVAs) were performed on
the slope and absolute (unsigned) biases using SPSS
statistical analysis software (version 18.0; SPSS Inc.,
Chicago, IL). All other statistical tests used are
described in the individual experimental sections.

Figure 1. Schematic diagram representing the parameters

manipulated and the stimuli used. The central patch shows an

example reference (always containing 128 elements). In Exper-

iment 1 (top), patch size and element size were both systemat-

ically manipulated. In Experiment 2 (right), element size was

manipulated whilst patch size was fixed and matched across

patches to examine the effects of element size under conditions of

low uncertainty. In Experiments 3 and 4 (bottom), the effects of

luminance and contrast-polarity respectively were examined; a

smaller patch size mismatch was still introduced, however, in

order to decouple number and density and encourage observers

to make the appropriate judgment type. Finally, in Experiment 5

(left), available attentional resources were manipulated using a

dual-task attentional load paradigm. Whilst performing density

and number discriminations, observers had to simultaneously

detect targets defined by a unique color (low attentional load) or a

conjunction of color and the spatial arrangement of constituent

segments (high attentional load). Note: the term ‘‘element’’ refers

to an individual Gaussian blob, whilst the term ‘‘patch’’ refers to

each collection of elements (i.e., the reference and test patch).
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Experiment 1: manipulations of
both patch and element size

We first examined the effects of element size and
patch size on judgments of number and density. We
have previously shown that mismatching relative patch
size impairs performance—in terms of increasing thresh-
old and bias—on both of these judgments (Dakin et al.,
2011). As previously outlined, a common mechanism for
number and density discrimination predicts a conver-
gence of effects of all experimental manipulations. The
influence of element size mismatch is of particular
interest, however, as the response-ratio model of density
and number perception would predict impaired perfor-
mance when test and reference elements differ in size,
if—and only if—the spatial frequency of filters is fixed
for the two stimulus intervals, i.e., if no compensation
can be made for differences in element size. This could
be avoided, however, if the visual system is capable of
weighting a response-ratio estimate to compensate for
differences in element size, as has been shown for
mismatches in patch size (Dakin et al., 2011). The aims
of Experiment 1 therefore are two-fold: (1) to test the
prediction that density and number judgments are
similarly affected by manipulations of patch and element
size, and (2) to determine whether the visual system is
capable of compensating for relative element size in its
estimates of relative number and density.

Methods

Patch size and element size were systematically
varied at two levels for both the reference and test
patches, creating a 4 · 4 design. Test and reference
patches could have radii of 28 or 48. The standard
deviation of the Gaussian envelope describing test and
reference elements could have a value of 2.5 or 5
arcmins. Hence, patches could be matched on both
dimensions (PE/PE, Pe/Pe, pE/pE, pe/pe), mismatched
on a single dimension (patch size [PE/pE, Pe/pe, pE/
PE, pe/Pe] or element size [PE/Pe, Pe/PE, pE/pe, pe/
pE]), or mismatched on both (PE/pe, Pe/pE, pE/Pe, pe/
PE), generating 16 unique conditions. Elements were of
random contrast-polarity, and patches had a peak
Michelson contrast of 50%. All observers performed a
minimum of two runs per discrimination type (number
and density).

Results

For each of the 16 combinations of patch and
element size, and each of the two judgments (number or
density), psychometric functions were derived for each

observer. These functions plot performance as the
frequency that the reference stimulus was seen as either
more numerous or more dense than the test stimulus.
From this, we derived both estimates of bias (point of
subjective equality) and sensitivity (the slope of the
function). In Figure 2, biases and sensitivities are
shown for density and number judgments when both
parameters were matched (red and black symbols) as
well as when mismatched for a single parameter (blue
and green symbols). In Figure 3, data are plotted for
the double mismatched conditions (PE/pe, Pe/pE, pE/
Pe, pe/PE). These were presented in a separate figure
for clarity. First, considering the effects of mismatching
patch size when element size is held constant (Figure 2a
and b), performance is clearly most sensitive and least
biased when reference and test patches are matched in
size; red and black data points are centered about zero
on the abscissa and ordinate values are maximal. When
a mismatch in patch size is introduced, however (green
and blue data points), sensitivity drops and large biases
are introduced; these biases are systematic such that
when the reference patch is larger than the test patch
(blue data points), more elements must be added to the
test for it to appear equally dense or numerous
(approximately 240% relative to the reference). That
is, large patches look more dense and more numerous
than they truly are. Conversely, when the reference
patch is smaller than the test patch (green data points),
there must be fewer elements in the test for it to be
perceived as equally dense or numerous (approximately
50% relative to the reference). This effect, also shown
previously (Dakin et al., 2011), captures the fact that
the perceived numerosity and density of large patches
are overestimated. Note also, that as in the original
study, the effect is greater for density than it is for
number.

Next, consider the effects of mismatching element
size on number and density performance when patch
size is held constant (Figure 2c and d). Once again,
judgments are minimally biased and most sensitive
when patches are matched (red and black data points).
Similar to manipulations of patch size, mismatches of
element size induce large biases; green and blue data
points fall away from the midline. However, these differ
in sign between individuals, with some observers’ data
being consistent with small elements making a patch
appear more dense/numerous, whereas others’ are
consistent with the reverse. Note, however, that for
most observers, the sign of the bias is maintained across
judgment types, such that if their green data points (test
. reference) are to the left of center in the density plot
(negative biases; Figure 2c), they will also fall to the left
in the number plot (Figure 2d). This was true of four of
our five observers on all conditions involving a
mismatch of element size.
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Finally, consider the conditions in which the test and
reference are mismatched on both dimensions (element
size and patch size; Figure 3). The first thing to note is
that relative to the double matched conditions (white
symbols, presented for comparison), data are once
again heavily biased and sensitivity is reduced. Thus, all
other (colored) data points fall away from the midline
on the abscissa and ordinate values are minimal.
Further, fits to the data are comparatively poor with
several data points falling out of range and error bars
dominating the plot. This implies that, for both density
and number tasks, several observers had difficulty
making judgments on trials in which relative patch size

and element size were simultaneously mismatched. For
data points that do show a reasonable fit, however (i.e.,
those with small error bars), it is clear that the effects of
size-mismatching are dominated by relative patch size
rather than relative element size. This is true of both
density and number judgments. Thus, there is a general
trend for purple and yellow data points (which are the
conditions in which the reference patch is smaller than
the test patch, irrespective of element size) to fall to the
left of center on the abscissa: a negative bias, implying
that at the perceived match point there were insufficient
elements in the test. Similarly, there is a trend for black
and orange symbols (which are conditions in which the

Figure 2. Sensitivity and bias are shown for density judgments (a and c) and number judgments (b and d) under conditions of double

parameter matched and single parameter mismatched conditions. A and b plot the effects of patch size when element size is held

constant (large symbols¼ large elements; small symbols¼ small elements). C and d plot the effects of element size when patch size is

held constant (large symbols¼ large patches; small symbols¼ small patches). Red and black symbols represent conditions in which the

parameter of interest is matched across target and reference; blue and green symbols represent conditions in which the parameter of

interest is mismatched. The legend of a and c shows a key to the conditions (‘‘P’’¼ large patch; ‘‘p’’¼ small patch; ‘‘E’’¼ large elements;

‘‘e’’ ¼ small elements). Details of the reference are always given first. For example, in a, the green symbols (p/P) show data from

conditions in which the reference is small and the target is large (i.e., patch size is mismatched). The abscissa shows bias in octaves

(lower axis labels) as well as matching test density/number (%) (upper axis labels) for cross-reference. Along the ordinate axes, sensitivity

data are plotted in octaves (left axis labels) as well as threshold test number/density (%) (right axis labels) for cross-reference. For

example, in a, a bias ofþ1 octave implies that, for a perceptual match to be made, the test patch must have a density twice that (200%) of

the reference. Vertical dotted grey lines denote zero bias. Horizontal dotted grey lines denote average sensitivity as recorded in the

original study (Dakin et al., 2011). Error bars plot the standard deviation of fit parameters derived from bootstrapping.
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reference patch is larger than the test patch irrespective
of element size) to fall to the right of center: a positive
bias, implying that at the perceived match point there
were too many elements in the test. This pattern once
again reflects the tendency for larger patches to be
perceived as more dense and more numerous. The
double mismatched conditions therefore reinforce the
findings of the single mismatched conditions and
suggest that, for both number and density judgments,
mismatching patch size and element size introduces
bias and reduces observer sensitivity. This close
correspondence between number and density judg-
ments is also captured by a highly significant correla-
tion between density sensitivity and number sensitivity,
as well as density bias and number bias (rs . 0.6, ps ,
0.0001; Figure 4), and is consistent with a shared
underlying metric driving both judgments.

To quantitatively test these findings at the group level,
data from Experiment 1 were subjected to two repeated-
measures ANOVAs (one for absolute biases and one for
sensitivities), each with four factors: task (density or
number judgment), relative patch size (matched or
mismatched), relative element size (matched or mis-
matched), and replicate number (1, 2, 3, or 4). Replicate
number was included as a factor in the model because,
for each condition type, e.g., a density judgment
matched for patch and element size, four different patch
size/element size combinations were possible (PE/PE,
Pe/Pe, pE/pE, pe/pe; see previous discussion). Analyses

show that, with respect to absolute biases, there was no
effect of task type (F(1,4) ¼ 4.47, p ¼ 0.1) or replicate
number (F(3,12)¼ 0.07, p¼ 0.98), but a highly significant
effect of relative patch size (F(1,4)¼ 22.29, p¼ 0.009) and
a weaker (though significant) effect of relative element
size (F(1,4)¼ 11.48, p¼ 0.03). Similar results were found
with respect to sensitivity: no effect of task type (F(1,4)¼
1.23, p ¼ 0.33) or replicate number (F(3,12) ¼ 1.59, p ¼
0.24) with significant effects of relative patch size (F(1,4)¼
24.02, p¼ 0.008) and relative element size (F(1,4)¼ 17.71,
p¼ 0.01).

Discussion

These data demonstrate that mismatching patch size
reduces the sensitivity of relative density and number
judgments and introduces systematic biases that are
consistent with larger patches being perceived as more
numerous and more dense, replicating our previous
study (Dakin et al., 2011). A similar bias, studied using
a comparable 2-IFC paradigm, has been reported for
number judgments (Tokita & Ishiguchi, 2010), al-
though no effect of patch size manipulation was found
when the reference consisted of an internal standard
(Allik, Tuulmets, & Vos, 1991; Ross & Burr, 2010),
highlighting the importance of observers making
explicit judgments on a pair of stimuli. That there is a
substantial effect of patch size on number and density

Figure 3. Sensitivity and bias are shown for density judgments (a) and number judgments (b) when both parameters (patch size and

element size) are mismatched between the test and reference. Data from the double mismatched conditions are presented with colored

symbols (orange, black, purple, and yellow). Note that there are four double mismatched conditions as patch and element sizes could be

mismatched in the same direction (PE/pe and pe/PE) or in opposite directions (Pe/pE and pE/Pe). For comparison, data are also shown

for double matched conditions, i.e., trials in which the test and reference are matched with respect to element size and patch size (white

symbols: PE/PE, for example). See legend to Figure 2 for further details.
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judgments is inconsistent with either density or number
being independent visual attributes. Rather, we suggest
that each is derived from a common perceptual metric
and that the response-ratio model (Dakin et al., 2011)
can account for the effect of patch size mismatch on the
bias and sensitivity of both number and density
discriminations (see modeling section). To reiterate,
this model takes the relative output of high and low
spatial frequency (SF) filters (each of which roughly
captures element number and patch size respectively) as
a common first stage in the estimation of both density
and number. However, because the low SF output does
not rise fast enough as patch size increases, the
response ratio is biased toward overestimation of
density for larger patches (mirroring the observers’
own biases). In order to estimate number under
conditions of patch size mismatch, the authors propose
that the visual system attempts to essentially recover
the raw high SF response by reweighting the response-
ratio by an estimate of relative patch size (actually
derived using the relative low SF responses). This
manipulation gives a workable numerosity estimate
with relatively low bias. (See Dakin et al., 2011 for a
more in-depth discussion.)

The data from Experiment 1 demonstrate that
mismatches in element size also severely disrupt
performance, resulting in a significant increase in bias
and decrease in sensitivity. Though the sign of this bias
varies between observers, for any given observer it is

largely consistent across judgment types (number and
density), implying that biases are nonrandom. It is
interesting to note therefore that previously reported
effects of element size on perceived numerosity, where
found, are varied, with two studies being consistent
with a small element size/high numerosity bias (So-
phian, 2007; Tokita & Ishiguchi, 2010), one with a large
element/high numerosity bias (Hurewitz, Gelman, &
Schnitzer, 2006), and a third reporting changes in
sensitivity only (Ross, 2003). Discrepancies in the
literature and our own intersubject differences may
therefore reflect multiple cognitive strategies, a notion
that is at least consistent with several of our observers
reporting a tendency to compensate for intrinsic bias by
systematically reversing the sign of their responses.
Regardless of the origin of these effects, however, both
density and number judgments were biased by mis-
matches of element size, and sensitivity was reduced
(Figure 2 and 3). Interindividual variation in these
values was also tightly correlated across judgment types
(Figure 4), findings that are entirely consistent with a
common metric underlying density and number judg-
ments. Could this common metric again reflect the use
of the response-ratio? To do so, the response-ratio
estimate could be weighted by relative element size (as
well as patch size). However, it would seem that, at
least within this experimental paradigm, observers
often scale inappropriately, albeit in a similar manner,
for both density and number estimates.

Figure 4. Correlations between density/number sensitivity (a) and density/number bias (b). each data point represents a distinct condition/

observer (observers coded by color). Note that, while both sensitivity and bias are highly correlated, biases are greater for density

judgments than they are for number judgments (b); hence the slope is , 1 (0.39). In contrast, the slope for sensitivity is closer to 1 (0.84).

Vertical dotted grey lines denote zero bias. Horizontal dotted grey lines denote average sensitivity as recorded in the original study (Dakin

et al., 2011). Error bars plot the standard deviation of fit parameters derived from bootstrapping.
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Experiment 2: manipulation of
element size alone

Whilst the effects of mismatching patch size in
Experiment 1 were consistent with the pattern of results
previously reported (Dakin et al., 2011), the magnitude
of the biases reported here were approximately double
those of our earlier study. The only major difference
between this and the earlier study was that here
observers made judgments under conditions of high
stimulus uncertainty as element size was systematically
manipulated along with patch size, whereas in the
original experiment only patch size was manipulated.
Accordingly, judgments under conditions of dual
uncertainty (i.e., when both patch and element size
simultaneously differed within a trial) were highly
unreliable (Figure 3). Consequently, we wondered
whether the effect of element size mismatch observed
when patch size and element size varied within the same
block (high stimulus uncertainty; Experiment 1) would
be diminished with reduced stimulus uncertainty. To
test this hypothesis, element size was manipulated
whilst observers performed density and number dis-
criminations on test and reference patches that were
fixed and matched with respect to patch size.

Methods

Five observers (four from Experiment 1; all experi-
enced psychophysics observers, three naı̈ve to the
purpose of the study) performed number and density
discriminations under conditions of fixed patch size and
varying element size. Patch radius was fixed at 48,
whilst test and reference elements could have Gaussian
envelopes with a standard deviation of 2.5 or 5 arcmins
(PE/PE, Pe/Pe, PE/Pe, Pe/PE). All observers completed
a minimum of one run per judgment type. Note that in
this experiment, because test and reference patches
were always matched in size, density and number
covaried; as a result, both cues were simultaneously
available on both ‘‘density’’ and ‘‘number’’ runs.

Results

To determine whether observers’ biases and sensi-
tivities differed between density and number runs, a
series of paired-samples t-tests were performed for each
condition comparing parameter estimates between
judgment types. As expected (given that density and
number covaried), there were no significant differences
between parameter estimates for the two judgment
types (all ps . 0.05) even without correction for
multiple comparisons. In addition, density/number

sensitivities and biases were both highly correlated (ps
, 0.01). Consequently, data from density and number
runs were pooled (before refitting the data afresh) to
increase the confidence of the fits. The parameter
estimates for this pooled data are presented in Figure 5.
As is clearly evident, whilst sensitivity is still greatest
when element size is matched between test and
reference patches (red and black data points typically
fall above the blue and green), with the exception of
one observer (SCD) all biases reported in Experiment 1
collapse, so that the data are tightly clustered about
zero on the abscissa. This is reflected in the outcome of
two repeated-measures ANOVAs, one for sensitivity
and one for bias (two factors: relative element size
[matched or mismatched] and replicate [1 and 2]).
Replicate was included as a factor in the analysis as, for
each condition type, two different element size combi-
nations were possible: matched (E/E and e/e) and
mismatched (E/e and e/E). Analyses indicate a signif-
icant effect of element size on sensitivity (F(1,4)¼ 10.03,
p ¼ 0.03), but not on absolute bias (F(1,4) ¼ 1.68, p ¼
0.27), and no effect of replicate number on either (F(1,4)

¼ 1.51, p ¼ 0.29; F(1,4) ¼ 1.48, p ¼ 0.29).

Discussion

The data reported in Experiments 1 and 2, in
conjunction with our previous results (Dakin et al.,
2011), are consistent with observers being able to at

Figure 5. Sensitivity and bias are shown for density and number

judgments (combined prior to fitting) under conditions of matched

patch size and varying element size. Error bars plot the standard

deviation of fit parameters derived from bootstrapping.
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least partially compensate for mismatches in patch size
or element size when making judgments of relative
number or density. Under conditions of low uncertain-
ty, biases are greatly reduced (effect of patch size
mismatch; compare Experiment 1 with the original
study, Dakin et al., 2011) or largely non-existent (effect
of element size mismatch; compare Experiment 2 with
Experiment 1). In contrast, under conditions of high
uncertainty (i.e., in blocks in which patch size and
element size are simultaneously manipulated/inter-
leaved; Experiment 1), observers are typically poor at
correcting for patch/element size mismatches, and
resulting biases are large. This provides further
evidence against the use of the method of single stimuli
in experiments examining numerosity and/or density
perception; the resulting reduction in stimulus uncer-
tainty through the development of an internal standard
(Morgan, Watamaniuk, & McKee, 2000) may hide
underlying bias and sensitivity changes that would
otherwise be present.

Experiment 3: manipulation of
luminance contrast

Having shown that mismatches in patch size and
element size have similar effects on density and number
sensitivity/bias, we tested whether this close association
would survive mismatches in luminance contrast
between test and reference patches. An independent
estimate of number might be highly susceptible to these
manipulations—an estimator based on raw stimulus
energy should see higher contrast displays as more
numerous, for instance. In contrast, because density
necessarily requires a comparison between the elements
present (e.g., high SFs in the response-ratio model) and
the total area covered by the stimulus (e.g., low SFs in
the response-ratio model), luminance contrast would be
divided out by these computations. Of course, as
above, if both numerosity and density discriminations
are subserved by a common mechanism, we would
expect to find similar effects on each.

Methods

The relative mismatch in patch size was reduced
from an octave to half an octave (test and reference
patches could have radii of 2.48 or 3.48) to reduce
observer bias and hence the likelihood that the tails of
fit psychometric functions would fall out of the
stimulus range examined. The relative mismatch in
patch size was reduced rather than increasing the
stimulus range because of the space restrictions
involved in generating small patches with high density

and numerosity. In addition, only mismatched patch
size conditions were included in this experiment (P/p
and p/P), as patch size was not the parameter of
interest, only a tool to decouple number and density.
Element size was fixed at 5 minutes of arc. Luminance
contrast was systematically manipulated so that, on
half of all trials, the elements in one of the patches had
a contrast that was twice that of the other patch;
resulting patches had Michelson contrasts of 100% and
50% respectively. The increased contrast was randomly
assigned to either the test or the reference patch on a
trial-by-trial basis. This resulted in a 2 · 2 · 2 design
with three factors: task (density and number), relative
patch size (reference . test [P/p] and test . reference
[p/P]) and luminance contrast (matched and mis-
matched). All observers performed a minimum of two
runs per judgment type (number and density), except
for observer RS who performed one of each.

Results

In Figure 6, density (a) and number (b) sensitivities
under conditions of matched and mismatched contrast
are plotted for all five observers. For the purposes of
presentation, the relative patch size factor was collapsed;
sensitivity parameter estimates from the reference . test
and test . reference conditions were averaged following
fitting (for each observer). For three out of the five
observers, there seemed to be very little effect of
mismatching contrast on density or number sensitivity
(observers MST, RS, and KJ). For the two remaining
observers (EA and JAG), sensitivity was clearly elevated
in the contrast-matched conditions (relative to the
unmatched). However, when sensitivity was analyzed
at the group level in a repeated measures ANOVA, no
effect of task type (F(1,4)¼ 1.04, p¼ 0.37), relative patch
size (F(1,4)¼ 1.04, p¼ 0.37), or relative contrast (F(1,4)¼
4.35, p ¼ 0.11) was found. Despite this, individuals’
density and number sensitivities were significantly
correlated (r ¼ 0.45, p ¼ 0.04). Thus, although there is
little-to-no effect of variations in luminance contrast, the
effects that do occur are consistently applied to both
number and density judgments.

Discussion

Our results demonstrate that there is little-to-no
effect of variations in luminance contrast on judgments
of number and density. This is consistent with the
finding that number/density aftereffects using random
dot stimuli are relatively insensitive to changes in
contrast (Durgin, 2001), which may reflect an early
monocular contrast-normalization stage upstream
from the locus of density/number adaptation (Durgin,
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2001; Durgin & Hammer, 2001). There was some
variation between observers, however, suggesting either
interobserver variation in strategy or differential
sensitivity to the manipulation. It is possible that, if a
wider range of contrasts had been tested, sensitivity
might have fallen for all observers. For the observers
who were more strongly affected by these manipula-
tions, reduced sensitivity in the contrast mismatched
condition could imply either that observers’ decisions
were biased toward selecting the higher contrast (more
salient) patch as a result of attentional capture (a
nonperceptual bias), or alternatively, that luminance
contrast genuinely affects the perceived numerosity/
density of a stimulus (a perceptual bias). (See Carrasco,
Fuller, & Ling, 2008 and Prinzmetal, Long, &
Leonhardt, 2008 for a related discussion on the relative
role or perceptual versus nonperceptual biases in the

field of attention.) Notwithstanding, the critical find-
ings of this experiment as they relate to our first
prediction in the Introduction are unambiguous: (1)
within each individual, the effect of contrast on number
and density performance was virtually identical (com-
pare Figure 6a and 6b); (2) there was no main effect of
task type at the group level; and (3) density/number
sensitivities were significantly correlated (Figure 6c).
This is again consistent with the use of a common
metric for both number and density judgments.

Experiment 4: manipulation of
contrast-polarity

Experiments 1 to 3 have shown that density and
number judgments are affected almost identically by
manipulations of patch size, element size, and element
contrast. In Experiment 4, we examined the effects of
manipulating element contrast-polarity. In our earlier
study (Dakin et al., 2011), contrast-polarity was shown
to have little effect on predicted number discrimination
thresholds, a property that is achieved as a result of an
early rectification stage to the model (Figure 3). Once
again, a model based on a common metric and shared
mechanisms would predict similar effects on number
and density judgments.

Methods

Unless stated otherwise, stimulus parameters were
identical to those outlined in Experiment 3. Instead of
contrast being manipulated (fixed here at 50%), the
contrast-polarity of individual elements in test and
reference patches was systematically varied. On one-
third of trials, both patches contained elements of
random contrast-polarity (as in Experiments 1 and 2;
random condition); on another third of trials, both
patches contained elements of a single uniform (and
matched) polarity (all elements were either white or
black; matched condition); and on the remaining trials,
one patch was comprised of random contrast-polarity
elements, while the other was comprised of a single
uniform polarity (black or white; mismatched condi-
tion). Hence, there were three factors to the manipula-
tion: task type (density and number), relative patch size
(reference . target [P/p] and target . reference [p/P]),
and relative polarity (random, matched, mismatched).

Results

In Figure 7, density (a) and number (b) sensitivities
are plotted for each of five observers under conditions

Figure 6. Sensitivity for density (a) and number (b) judgments

under conditions of matched luminance contrast (contrast of test

and reference elements fixed at 50%) and mismatched contrast

(contrast of reference or test elements randomly doubled). (c)

Correlation between density/number sensitivity; each data point

represents a specific condition/observer (observers coded by

color). Vertical dotted grey line denotes zero bias. Horizontal

dotted grey line denotes average sensitivity as recorded in the

original study (Dakin et al., 2011). Error bars plot the standard

deviation of fit parameters derived from bootstrapping.
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of random, single, and mismatched contrast-polarity.
For the purpose of presentation, the patch size factor
was collapsed; sensitivity parameter estimates from the
reference . test and test . reference conditions were
averaged following fitting. Once again, there appears to
be considerable variation in strategy amongst observ-
ers. Two observers (MST and PB) showed a clear
tendency toward increased sensitivity in the single
polarity condition for both judgment types, whilst VR
showed a similar effect for density, but not number. At
the group level, this is reflected in a small but significant
effect of relative contrast-polarity (F(2,8)¼5.7, p¼0.03),
a significant interaction between task type and relative
contrast-polarity (F(2,8) ¼ 6.08, p ¼ 0.03), but no main
effects of task type (F(1,4) ¼ 0.3, p ¼ 0.61) or relative
patch size (F(1,4) ¼ 0.51, p ¼ 0.52). Finally, there was a

tight correlation between density and number sensitiv-
ities (r ¼ 0.54, p ¼ 0.002).

Discussion

As in previous experiments, we observe broadly
similar patterns of dependence of number and density
thresholds on the independent variable. That said, whilst
there was a general trend for elevated sensitivity in the
single polarity condition, this pattern was more pro-
nounced/consistent in the density task. Notice, however,
that it is only the performance of observer VR that differs
markedly between density and number tasks: VR
exhibits a clear single polarity advantage for density,
but none for number. (In Figure 7c, the outlying nature
of this single condition performance is highly evident.)
This pattern of results can be explained by assuming that
observer VR uses local luminance as a cue to density in
the single polarity condition, a strategy that would not be
reliable for number judgments, or any judgments in
Experiments 1 to 3 for that matter. In contrast, to explain
PB’s andMST’s increased sensitivity for both tasks in the
single polarity condition, one would have to assume that
these observers are using local energy and total energy as
cues to the density and number tasks respectively. Thus,
it would seem that by fixing the contrast, contrast-
polarity, and size of individual elements, additional cues
were made available to the observers (e.g., local/global
luminance). Irrespective of the interindividual variability
reported, it is worth noting that, once again at the group
level, there was no main effect on task type, and further,
density/number sensitivities were tightly correlated.
These findings are still consistent with a common
underlying metric for relative number and density
judgments, whilst highlighting a potential for exploita-
tion of additional cues when available.

Experiment 5: manipulation of
available attentional resources

If density and number estimation rely on a common
underlying metric and engage the same computations,
they should present comparable demands on available
attentional resources. In contrast, if either were
‘‘primary’’, then it should be less influenced by divided
attention. If density estimates were derived from
number estimates, for instance, the higher-order
calculation of density would likely require higher
cognitive resources than the more ‘‘direct’’ estimation
of number. To test this prediction, we used a dual-task
attentional load paradigm to manipulate available
attentional resources whilst observers performed basic
number and density discriminations.

Figure 7. Sensitivity for density (a) and number (b) judgments with

either random contrast-polarity (all elements in the test and

reference are of random contrast-polarity), single contrast-polarity

(both test and reference of a single contrast-polarity), and

mismatched contrast-polarity (all elements in one of the patches

of random contrast-polarity, all elements in the other patch of a

single uniform polarity). In (c), the correlation between density and

number sensitivity is shown for all five observers tested. Vertical

dotted grey line denotes zero bias. Horizontal dotted grey line

denotes average sensitivity as recorded in the original study

(Dakin et al., 2011). Error bars plot the standard deviation of fit

parameters derived from bootstrapping.
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Methods

To manipulate available attentional resources, a
dual-task attentional load paradigm adapted from that
described by Vetter, Butterworth, and Bahrami (2008)
was used. In addition to number and density discrim-
inations, observers had to perform a speeded target
detection task based on a simultaneously presented
diamond (4 DVA wide; presented at fixation) that was
divided into composite colored segments. Under low
load conditions, observers had to detect targets based
solely on the presence of the color red, whereas in the
high load conditions, targets were determined by the
conjunction of color and the spatial arrangement of
constituent segments (Figure 1, as well as Figure 1 in
Vetter, Butterworth, & Bahrami, 2008). On each trial,
observers first responded to the central task, indicating
by button press whether a target was ‘‘present’’ or
‘‘absent,’’ before responding to the secondary discrim-
ination task, indicating whether the left patch or the
right patch was more dense/numerous. For the
secondary task, all stimulus parameters matched those
described in Experiment 3 with the exception that all
elements were of random contrast-polarity. Hence,
there were three factors to the main body of the
experiment: secondary task type (density or number
judgment), relative patch size (reference . target and
target . reference), and primary task attentional load
(high and low). In addition, all tasks were performed
individually to get an estimate of baseline performance
(single task density discrimination, single task number
discrimination, primary task low attentional load,
primary task high attentional load). Observers were
instructed to prioritize accuracy over speed. All
observers performed a minimum of two runs for the
dual-task conditions. Response time and accuracy (%
correct) were measured for the primary target detection
task. Response times greater than 3 seconds were
excluded from the analysis on the basis that they
involved a pause in the experiment rather than a slow
response. Whilst this cutoff is arbitrary, changing it had
negligible effects on results. For the secondary task,
estimates of sensitivity and bias were derived as
outlined in previous experiments.

Results

In Figure 8, group level data are presented. For the
purpose of presentation, the patch size factor was
collapsed; sensitivity estimates from the reference .
test and test . reference conditions were averaged at
the observer level following fitting. In Figure 8a, group
mean response times are shown for the low and high
attentional load detection tasks. Data are presented
from single task and both double task performances

(with a concurrent density judgment [red data points]
and with a concurrent number judgment [green data
points]). Attentional load clearly elevates response
times (main effect of attentional load: F(1,4) ¼ 498, p
, 0.0001), as does the concurrent performance of a
secondary task (F(2,8) ¼ 36.04, p , 0.0001). This was
driven by a cost of performing a concurrent secondary
task (i.e., either secondary task), rather than an
exceptionally high cost of a density or number
judgment specifically. Thus, there was no significant
difference between response times for double task
number and double task density conditions at either
low or high attentional load levels (post hoc paired
samples t-tests: ps . 0.05).

Next, consider task accuracy on the primary color
detection task as measured by percent correct responses
(Figure 8b); whilst a similar pattern emerges (there is a
trend for attentional load and the concurrent perfor-
mance of a secondary task to impair performance),
there were no significant effects of secondary task (F(2,8)

¼3.26, p¼0.09) or attentional load (F(1,4)¼6, p¼0.07).
This may be partially due to a ceiling effect (accuracy
rarely dropped below 95%, even in the high load
double task attentional conditions). Irrespective, both
primary task measures indicate that density and
number tasks have no differential effects on concurrent
target detection performance.

In Figure 8c and d, group level sensitivities and
absolute biases are shown for the secondary (density
and number) tasks at three different primary task
attentional load levels: none (no concurrent detection
task), low (concurrent color detection task), and high
(concurrent color/spatial arrangement detection task).
It is clearly evident from both these plots that
performance for density and number judgments are
identically affected by the primary task manipulation;
attentional load reduces both density and number
sensitivity with very little effect on biases. Hence there
was a main effect of attention (F(2,8)¼ 21.39, p¼ 0.001)
with no effect of task (F(1,4)¼ 5.61, p¼ 0.08) or relative
patch size (F(1,4) ¼ 0.12, p ¼ 0.75) on sensitivity. Nor
was there any interaction between attention and task
(F(2,8)¼0.21, p¼0.82). With respect to biases, there was
no main effect of task (F(1,4)¼ 0.17, p¼ 0.71), attention
(F(2,8) ¼ 3.48, p ¼ 0.08), or relative patch size (F(1,4) ¼
1.46, p ¼ 0.29), nor an interaction between task and
attention (F(2,8) ¼ 1.14, p¼ 0.37).

Discussion

The results indicate that density and number
discriminations incur a comparable load on attention.
This contrasts with an earlier study in which number
estimation (above the subitizing range) was found to be
unaffected by attentional load (Burr, Turi, & Anobile,
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2010). However, there are a number of critical
differences between their study and ours, so it is
possible that the primary source of attentional inter-
ference in our experiment is not derived from density/

number estimation per se but the comparison process
itself. That is, the estimation process may be preatten-
tive, but the process of comparison between patches to
perform the 2-IFC discrimination might require atten-

Figure 8. Data from the dual-task attentional manipulation paradigm. (a) Group mean response times, and (b) group mean accuracies (%

correct) plotted for the primary (target detection) task as a function of attentional load. Data are presented for single task and both dual-

task conditions (i.e., when performed alone [black data points], in conjunction with a density judgment [red data points], or in conjunction

with a number judgment [green data points]). (c) and (d) plot group mean sensitivities and biases for the secondary tasks (density

judgments [red data points] and number judgments [green data points])as a function of attentional load (none, low, or high). In (e),

individual density sensitivities are plotted against number sensitivities for all observers. Error bars plot the standard error of the mean (a to

d) or the standard deviation of fit parameters (e) derived from bootstrapping.
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tion. Enumeration processes may also be more efficient
for low element numbers, making Burr and colleagues’
use of eight elements or fewer another significant
difference from our own study, which used a test range
centered on 128 elements. Alternatively, the dominant
source of interference reported here may reflect the
need to simultaneously distribute attention across
multiple spatial locations (Duncan, 1980; Tibber,
Grant, & Morgan, 2009). This seems unlikely, however,
because in the paradigm used by Burr, Turi, and
Anobile (2010), observers were required to attend to a
large region of the visual field (168 of visual angle).
Irrespective, the data reported suggest that density and
number judgments incur either negligible attentional
costs or else equivalent attentional costs over and
above those derived from other aspects of the
paradigm. Once again, the data are perfectly consistent
with a common underlying metric for number and
density discrimination, and provide no reason to posit
the existence of distinct mechanisms.

Experiment 6: modeling of the
data

Finally, we tested the ability of the response-ratio
model (Dakin et al., 2011), which is based on the notion
of a common metric for number and density discrim-
ination, to predict human psychophysical data gathered
in Experiments 1 to 4. Results from Experiment 5 were
not modeled as the response-ratio captures front-end
processes involved in the initial stages of number/
density estimation, and as such, has little to say about
cognitive effects or the role of attention.

Methods

Predictions of the response-ratio model to Experi-
ments 1 to 4 were derived from Monte Carlo
simulations of the data. Reference and test stimuli
were identical to those described in the Methods
sections for Experiments 1 to 4, except that a broader
stimulus range and finer sampling of cue levels were
used (64 trials per each of 17 cue levels spanning 4
octaves [reference level 6 2 octaves]). For each
condition and task, the model’s responses were plotted
as a function of stimulus cue; these were then fit with a
cumulative Gaussian function (as described in the
General Methods section), so that estimates of sensi-
tivity and bias could be obtained.

For full details of the model, please see Dakin et al.
(2011). In brief, when presented with a stimulus (a grey-
scale image), the image is rectified and convolved with a
pair of Laplacian-of-Gaussian (center-surround) filters:

one characterized by a high SF (Rhi) and one
characterized by a relatively low SF (Rlo), the output
of which broadly correlate with element number and
patch size respectively (see Figure 5 in Dakin et al.,
2011). A ratio of these outputs (C), corrupted by
multiplicative Gaussian random noise (2cr) with a
standard deviation r is then taken as a correlate of a
patch’s density (C ¼ 2cr Rhi/Rlo). To simulate a
discrimination judgment, this process is carried out
independently for both a test (Ct) and a reference (Cr)
patch, and a ratio of the two is taken, generating a
density response-ratio (dtr ¼ Ct/Cr). The denser
stimulus is then selected on the basis of whether dtr is
less than, or greater than, 1. To model number
discriminations, the same process is performed, except
that the density response ratio is weighted by an
estimate of the size-mismatch between patches (W),
thereby generating a number response ratio (nrt ¼
Wdrt). This size-mismatch weighting is derived from the
relative output of low SF filters to the reference and test
image, and includes a second noise term, S (W ¼ [2cr

[tRlo/ rRlo]]
! 2cS).

The basic model therefore has two free parameters:
early multiplicative noise (r) and late noise (S). To fit
data in the original study, these were set to 0.1 and 1.9
respectively (Dakin et al., 2011). To obtain the fits
described here, the local noise term (r) was kept at 0.1
for tasks 2–4, but was increased to 0.2 for Experiment
1. This may reflect increased stimulus uncertainty in
Experiment 1, which putatively arises from the
simultaneous manipulation of patch size and element
size in interleaved conditions (see Experiment 2
discussion). The second noise term (S) was fixed at
0.6. The only modification made to the original model
is that, here, the SF of the fine-scale filter was
dependent on the element sizes presented on any given
trial. The standard deviation of the fine-scale filter was
thus set to 1 or 5 arcmins for trials containing
exclusively small or large elements respectively, and to
an intermediate value (3 arcmins) for trials containing a
mixture of small and large elements. The standard
deviation of the coarse filter was always fixed at 13
arcmins.

Results

In Figure 9, human group mean psychophysical
performance for density and number discriminations
(green and red bars respectively) are presented for
Experiments 1 to 4, along with the predictions of the
response-ratio model (blue dots). The small black
crosses denote individual data. Considering bias first
(right-hand columns in each panel), whilst there is
considerable noise in the individual data, the predic-
tions of the model capture many of the general trends
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at the group level. In Experiment 1, the predictions
capture the flip in the sign of bias between conditions
1–8 and conditions 9–16 (Figure 9b and d), reflecting
the tendency for larger patches to be perceived as more
dense or more numerous (in conditions 1–8, the
reference is large; in conditions 9–16, the reference is
small; see key to conditions in Figure 9, right-hand
panel). Similarly, the model predicts that a similar
pattern of bias is induced—though reduced in magni-
tude—for smaller mismatches in patch sizes (Experi-
ments 3 and 4; Figure 9j and l, n, and p), and that
biases for number tasks exhibit the same sign, but are
typically attenuated further (Figure 9d relative to
Figure 9b). These findings imply that bias is largely
dominated by (and scales with) the relative mismatch in
patch sizes. While the model predicts that mismatches

in element size should also induce modest biases
(conditions 2 and 3 in Experiment 2; Figure 9f and
H), with the exception of a single observer (SCD),
human performance is largely unbiased. As described
in the discussion to Experiment 2, we suggest therefore
that under conditions of low stimulus uncertainty,
observers are able to at least partially correct for the
small effects of mismatches in element size.

The model also does reasonably well at predicting
density thresholds for most conditions from Experi-
ments 1 to 4 (Figure 9a, e, i, and m), as well as for
number thresholds from Experiments 2 and 3 (Figure
9g and k). However, it clearly fails to predict behavior
successfully in several conditions. Where the model
outperforms humans (e.g., Experiment 1, number task;
Figure 9c) it is not overly informative; the model merely

Figure 9. Group mean psychophysical performances for density (green bars) and number (red bars) discriminations are presented for

Experiments 1 to 4 along with the predictions of the response-ratio model (blue dots). Individual data are presented as small black

crosses. Condition numbers are listed on the abscissa. The key to each condition is presented in the right-hand panel. (‘‘P’’¼ large patch;

‘‘p’’¼ small patch; ‘‘E’’¼ large elements; ‘‘e’’¼ small elements; MisM Con¼mismatched contrast; M Con¼matched contrast; Ran Pol¼
random polarity; Sing Pol¼ single polarity; MisM Pol¼mismatched polarity). Remember that the mismatch in patch sizes was reduced in

Experiments 3 and 4 (see Methods for further details).
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defines a theoretical ceiling in performance. More
interesting, however, are the conditions in which the
human observers outperform the model. These are
indicative of limitations in the model and may reflect
the existence of additional cues exploited by the human
observer. For example, the model underperforms on a
subset of conditions in the number task of Experiment
3 (Figure 9k). Whilst the relative trends in the human
data are captured—sensitivity is highest when contrast
is matched (conditions 2 and 4)—the model performs
worse than every human observer in the contrast-
mismatched conditions (conditions 1 and 3). Critically,
this is not the case for the density task (Figure 9i). One
possibility therefore is that when the density response-
ratio (dtr) is weighted by an estimate of relative patch
size to derive an estimate of relative number (ntr ¼
Wdtr), contrast dependence (originally removed by the
taking of filter output ratios to each patch) is
reintroduced into the metric. This is because the
weighting is based on the relative output of the coarse
filter to the reference and test stimuli and is therefore
not contrast normalized. Because the higher contrast
signal was randomly assigned to the reference or test on
each trial, this will have manifested itself as a trial-by-
trial fluctuation in bias and, specifically, elevated
thresholds in the contrast mismatched number condi-
tions. As the human behavior did not show such a
pronounced collapse in performance in the contrast-
mismatched conditions, a role for additional (non-
contrast-based) cues in the estimation of relative patch
size are implicated.

The second place where the model underperforms is
in the density task from Experiment 4 (Figure 9m). The
model’s sensitivity essentially collapses in conditions 2,
3, 5, and 6. These are all conditions that involve at least
one patch comprised of single-polarity (i.e., all black or
all white) elements. We believe that this may arise
because when two matched-polarity elements overlap,
they sum, resulting in clipping and a disproportionate
boost in the low SFs. Hence, the high SF filter’s
response saturates and sensitivity falls drastically, an
effect that would only occur in the density tasks
because of the extremely high densities reached at the
highest cue levels. As human performance does not
collapse under these conditions, the implication is that
additional cues, e.g., luminance cues, may begin to be
informative in such high-density stimuli.

Discussion

Whilst there is considerable noise in the human
psychophysical data, the response-ratio model does a
surprisingly good job of predicting general trends in
observers’ behavior across a range of stimulus manip-
ulations. The strength of this finding is increased by the

fact that Experiments 1 to 4 were not originally
designed to constrain the model, and that predictions
have been fit to some 120 data-points (Figure 9) with
few free parameters. Further, conditions in which the
model’s predictions and human psychophysical behav-
ior diverged proved to be highly informative and will
inform further developments of the response-ratio
model. Nonetheless, the broad correspondence between
observed and predicted behavior (particularly with
respect to biases) support the notion of a shared
common metric to density and number estimation.

General discussion

The data reported here are unambiguously consis-
tent with density and number estimates being derived
from a common underlying metric. Thus, we have
shown that:

# Density and number estimates are not independent.
Manipulations of either dimension (by mismatching
patch size) result in reduced sensitivity and elevated
biases in the other (replicating previous findings;
Experiment 1).

# The effects of manipulating patch size, element size,
and luminance contrast are near identical on relative
density and number judgments (Experiments 1 to 4).

# Density sensitivity and number sensitivity are con-
sistently correlated across all experimental manipu-
lations undertaken (Experiments 1 to 5).

# When the range is not restricted, density biases and
number biases are also significantly correlated
(Experiment 1).

# Number and density judgments make indistinguish-
able demands on available attentional resources
(Experiment 5).

# General trends in the data from Experiments 1 to 4
can be predicted with a relatively simple filter-energy-
based model that relies on a common first-stage
metric for number and density estimation.

There were only two findings that distinguished
density and number estimation behaviorally. First,
biases under conditions of mismatched patch size were
considerably greater for density judgments. However,
this pattern of results falls out of the response-ratio
model by assuming that number estimates are weighted
by an approximation of relative patch sizes, a necessary
step to the judgment if estimates of numerosity are to
be anything but wildly inaccurate (Figure 9). Another
important point to note is that, whilst the magnitude of
these biases differed, they were highly correlated, which
is to be expected if both are derived from a common
metric. Secondly, when luminance contrast, contrast-
polarity, and the size of individual elements were held
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constant (Experiment 4; matched polarity condition),
one observer’s behavior for density and number
estimation diverged. Thus, VR showed elevated sensi-
tivity for density judgments (compared with when
contrast-polarity was mismatched across patches or
randomized), but no improvement for number estima-
tion. However, when contrast, contrast-polarity, and
element size are held constant, absolute local luminance
provides an additional cue to the density task, but not
to the number task. Consequently, it is likely that this
divergence of behavior merely reflects the potential to
use additional cues when they are available. This
possibility is supported by the fact that a similar benefit
of uniform polarity elements was not found when
luminance-balanced difference of Gaussian (DoG)
elements—which would not provide absolute lumi-
nance cues—were used (Ross, 2003).

How can these data be reconciled with the notion
that number is extracted independently of other
stimulus dimensions? Evidence for this position comes
from two sets of studies by Burr and Ross: the first
involving adaptation (Burr & Ross, 2008b) and the
second is a set of discrimination judgments similar to
those reported here (Ross & Burr, 2010). We will not
discuss the former here; firstly, because we did not use
an adaptation paradigm so that our results do not
speak directly to their data, and secondly, because we
feel that Durgin convincingly demonstrated that the
data are consistent with adaptation following the
density of the adapter (or some correlate of density)
rather than numerosity per se (Durgin, 2008), i.e.,
patch area was critical. With respect to their second
study, Ross and Burr (2010) suggest that ‘‘perhaps the
strongest evidence for independent mechanisms for
sensing numerosity and texture (at least dense texture)
was that while numerosity estimates show strong
dependency on luminance [. . .], texture density was
completely independent of luminance over this range.’’
However, in the study performed therein, very different
experimental stimuli were used to probe the effects of
luminance on density and number estimation. This was
to some extent necessary, as the authors wanted to test
for any association between number estimation and
texture density specifically (as proposed by Durgin,
2008). However, it is therefore unclear whether the
differential effects they report reflect distinct mecha-
nisms of density and number estimation per se, or
differences in the stimuli used and cues that they carry.
Indeed, when we assessed the effects of luminance
contrast on perceived number and density discrimina-
tion using matched stimuli and paradigms, we found
near-identical effects on density and number perfor-
mance (Experiment 3). Note, however, that unlike Ross
and Burr (2010) who manipulated luminance using
single-polarity elements, we used mixed-polarity ele-
ments, and thus, at the level of the stimulus patch,

manipulated luminance contrast, not absolute lumi-
nance. Nonetheless, it would be of interest to compare
the effects of luminance on texture density and random
dot density estimation; as taken together, our data and
that of Ross and Burr (2010) raise the possibility that
they are not subserved by identical processes.

In the same study (Ross & Burr, 2010), the authors
provide additional results they suggest imply number is
estimated independent of density; number thresholds
were no greater than density thresholds, and further,
holding density constant (by yoking patch size and
number) did not impair number performance. Presum-
ably, the assumption here is that if density (D) and
number (N) are connected, it is because the visual
system calculates density first, and then derives number
by multiplying through by area (A) (D¼N/A, therefore
N ¼ D*A) in a noisy process that elevates thresholds.
Thus, if density cues are available, this noisy transfor-
mation may be bypassed, resulting in reduced thresh-
olds. However, in the response-ratio model, density is
not calculated first. Instead, a common metric based on
the relative output of high and low SF filters is
estimated, which may then be corrected for mismatches
in patch size (or element size) to generate a correlate of
density and/or number. The model, therefore, does not
necessarily predict reduced thresholds when density
cues are present. In fact, a reverse prediction could be
made: when density cues are not present, and patch size
is yoked to element number (constant density condition
in Ross and Burr’s experiment, 2010), patch size
provides an additional cue to the number task, and
thresholds could fall. Indeed, this is precisely what they
report (figure 3a, Ross & Burr, 2010). Thus, the finding
that number thresholds were no greater than density
thresholds (a result that we replicate here), and further,
that performance was no worse when density was held
constant does not providence evidence of independent
processing. If anything, the close and robust corre-
spondence between density and number thresholds may
simply be indicative of a common underlying mecha-
nism.

In conclusion, whilst the data reported are entirely
consistent with density and number estimation being
based on a common metric, we have also shown that
the effect sizes are extremely sensitive to manipulations
of stimulus uncertainty (Experiments 1 and 2), that
observers may exploit additional cues when they are
available (Experiment 4), and also that there may be
considerable interindividual variation in strategy (Ex-
periments 3 and 4). When taken together with previous
reports that number biases are lost with practice
(Tokita & Ishiguchi, 2010) and that the range, i.e.,
number of elements in the stimulus (Durgin, 1995), as
well as the experimental paradigm used (Allik, Tuul-
mets, & Vos, 1991; Dakin et al., 2011; Ross & Burr,
2010; Tokita & Ishiguchi, 2010) are highly critical to
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many of the reported effects, it is no longer surprising
that there are discrepancies in the existing number/
density literature. Nonetheless, by testing parallel
effects on density and number judgments using
identical stimuli and matched experimental paradigms,
we believe that our findings are robust, and further,
that they support a response-ratio model of density/
number discrimination.
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Footnote

1Note that while number estimates could in principle
be derived from the sole output of high spatial
frequency detectors, this would fail to capture the
biases that we observe with mismatches in patch size
(Dakin et al., 2011).
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